1. Handbook of RAFT Polymerization, Barner-Kowollik C. (Ed.), Wiley-VCH Verlag, Weinheim, Germany, 1-45, 2008.
2. Braunecker W.A. and Matyjaszewski K., Controlled/Living Radical Polymerization: Features, Developments, and Perspectives, Prog. Polym. Sci., 32, 93-146, 2007.
3. Zhang H., Controlled/”Living” Radical Precipitation Polymerization: A Versatile Polymerization Technique for Advanced Functional Polymers, Eur. Polym. J., 49, 579-600, 2013.
4. Grubbs R.B. and Grubbs R.H., 50th Anniversary Perspective: Living Polymerization-Emphasizing the Molecule in Macromolecules, Macromolecules, 50, 6979-6997, 2017.
5. Hybrid Materials: Synthesis, Characterization, and Applications, Kickelbick G. (Ed.), John Wiley & Sons, 1-46, 2007.
6. Caseri W., Nanocomposites of Polymers and Inorganic Particles, Hybrid. Mater., 6, 49-86, 2007.
7. Suri S.S., Fenniri H., and Singh B., Nanotechnology-Based Drug Delivery Sysems, J. Occup. Med. Toxicol., 2, 1-6, 2007.
8. Hussain F., Hojjati M. Okamoto M., and Gorga R.E., ReviewArticle: Polymer-Matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview, J. Compos. Mater., 40, 1511-1575, 2006.
9. Boyer C., Bulmus V., Davis T.P., Ladmiral V., Liu J., and Perrier S., Bioapplications of RAFT Polymerization, Chem. Rev., 109, 5402-5436, 2009.
10. Cardoso V.F., Francesko A., Ribeiro C., Bañobre-López M., Martins P., and Lanceros-Mendez S., Advances in Magnetic
Nanoparticles for Biomedical Applications, Adv. Healthc. Mater., 8, 1-35, 2018.
11. Ghamkhari A., Agbolaghi S., Poorgholy N., and Massoumi B., pH-Responsive Magnetic Nanocomposites Based on Poly(2-succinyloxyethyl methacrylate-co-methylmethacrylate) for Anticancer Doxorubicin Delivery Applications, J. Polym. Res., 25, 2018.
12. Hosseinzadeh S., Hosseinzadeh H., Pashaei S., and Khodaparas Z., Synthesis of Stimuli-Responsive Chitosan Nanocomposites via RAFT Copolymerization for Doxorubicin Delivery, Int. J. Biol. Macromol., 121, 677-685, 2019.
13. Hervault A., Dunn A.E., Lim M., Boyer C., Mott D., Maenosono S., and Thanh N.T.K., Doxorubicin Loaded Dual pH- and
Thermo-responsive Magnetic Nanocarrier for Combined Magnetic Hyperthermia and Targeted Controlled Drug Delivery
Applications, Nanoscale, 8, 12152-12161, 2016.
14. Ahmadkhani L., Akbarzadeh A., and Abbasian M., Development and Characterization Dual Responsive Magnetic Nanocomposites for Targeted Drug Delivery Sysems, Artif. Cells Nanomed. Biotechnol., 46, 1052-1063, 2018.
15. Xiao Z.P., Yang K.M., Liang H., and Lu J., Synthesis of Magnetic, Reactive, and Thermoresponsive Fe3O4 Nanoparticles via Surface-Initiated RAFT Copolymerization of N-isopropylacrylamide and Acrolein, J. Polym. Sci. Part A: Polym. Chem., 48, 542-550, 2010.
16. Pourjavadi A., Kohesanian M., and Shirzad M., Synthesis and Characterization of Magnetic Hybrid Nanomaterials via RAFT Polymerization: A pH Sensitive Drug Delivery Sysem, Colloids Surf. B: Biointerfaces., 174, 153-160, 2019.
17. Pourjavadi A., Kohesanian M., and Streb C., pH and Thermal Dual-Responsive Poly(NIPAM-co-GMA)-Coated Magnetic
Nanoparticles via Surface-Initiated RAFT Polymerization for Controlled Drug Delivery, Mater. Sci. Eng. C., 108, 110418,
2020.
18. Yang K., Feng L., Shi X., and Liu Z., Nano-Graphene in Biomedicine: Theranosic Applications, Chem. Soc. Rev., 42,
530-547, 2013.
19. Abbasian M., Roudi M.M., Mahmoodzadeh F., Eskandani M., and Jaymand M., Chitosan-Grafted Poly(methacrylic acid)/Graphene Oxide Nanocomposite as a pH-Responsive de novo Cancer Chemotherapy Nanosysem, Int. J. Biol. Macromol., 118, 1871-1879, 2018.
20. Song Z., Xu Y., Yang W., Cui L., Zhang J., and Liu J., Graphene/Tri-block Copolymer Composites Prepared via RAFT Polymerizations for Dual Controlled Drug Delivery via pH Stimulation and Biodegradation, Eur. Polym. J., 69, 559-
572, 2015.
21. Pourjavadi A., Kohesanian M., and Yaghoubi M., Poly(glycidyl methacrylate)-Coated Magnetic Graphene Oxide as a Highly Efcient Nanocarrier: Preparation, Characterization, and Targeted DOX Delivery, New J. Chem., 43, 18647-18656, 2019.
22. Gomes D.S., Santos A.M.C., Neves G.A., and Menezes R.R., A Brief Review on Hydroxyapatite Production and Use in
Biomedicine, Cerâmica, 65, 282-302, 2019.
23. Heng C., Zheng X., Liu M., Xu D., Huang H., Deng F., Hui J., Zhang X., and Wei Y., Fabrication of Luminescent Hydroxyapatite Nanorods through Surface-Initiated RAFT Polymerization: Characterization, Biological Imaging and
Drug Delivery Applications, Appl. Surf. Sci., 386, 269–275, 2016.
24. Bach L.G., Rafqul Islam M., Vo T.S., Kim S.K., and Lim K.T., Poly(allyl methacrylate) Functionalized Hydroxyapatite
Nanocrysals via the Combination of Surface-Initiated RAFT Polymerization and Thiol-ene Protocol: A Potential Anticancer
Drug Nanocarrier, J. Colloid Interface Sci., 394, 132-140, 2013.
25. Jeelani P.G., Mulay P., Venkat R., and Ramalingam C., Multifaceted Application of Silica Nanoparticles. A Review,
Silicon, 12, 1337-1354, 2020.
26. Zheng Y., Wang L., Lu L., Wang Q., and Benicewicz B.C., pH and Thermal Dual-Responsive Nanoparticles for Controlled
Drug Delivery with High Loading Content, ACS Omega, 2, 3399-3405, 2017.
27. Elahi N., Kamali M., and Baghersad M.H., Recent Biomedical Applications of Gold Nanoparticles: A Review, Talanta, 184, 537-556, 2018.
28. Wang Z., Jia L., and Li M.H., Gold Nanoparticles Decorated by Amphiphilic Block Copolymer as Efcient Sysem for Drug Delivery, J. Biomed. Nanotechnol., 9, 61-68, 2013.
29. Ishag A. and Sun Y., Recent Advances in Two-Dimensional MoS2 Nanosheets for Environmental Application, Ind. Eng.
Chem. Res., 60, 8007-8026, 2021.
30. Zhang A., Li A., Zhao W., Yan G., Liu B., Liu M., Li M., Huo B., and Liu J., An Efcient and Self-guided Chemohotothermal Drug Loading Sysem Based on Copolymer and Transferrin Decorated MoS2 Nanodots for Dually Controlled Drug Release, Chem. Eng. J., 342, 120-132, 2018.