1. Barin S., Investigation the Viscosity in Digital Inks, Ceram. Sakhteman Magazine (Persian), 33, 20-25, 2016.
2. https://fa.wikipedia.org/w/index.phptitle=Rheology&old
id=25105301.
3. Silva T.C.F., Habibi Y., Colodette J.L., Elder T., and Lucia L.A., A Fundamental Investigation of the Microarchitecture
and Mechanical Properties of TEMPO-Oxidized Nanofibrillated Cellulose (NFC)- Based Aerogels, Cellulose, 19, 1945–
1956, 2012.
4. Ghofran R., Moradian M.H., Saadatnia M.A., and Rezayati Charani P., Application of Cellulose Nanofibers to be Replaced
with the Imported Long-Fiber Pulps in Papers Made from Bagasse, Iran. J. Wood. Pap. Indust. (Persian), 4, 523-
536, 2016.
5. Osong S.H., Norgren S., and Engstrand P., Processing of Wood-based Microfibrillated Cellulose and Nanofibrillated
Cellulose, and Applications Relating to Papermaking: A Review, Cellulose, 23, 93-123, 2015.
6. Shimizu M., Saito T., and Isogai A., Water-Resistance and High Oxygen-Barrier Nonocellulose Films with Interfibrillar
Cross-linkages Form Through Multivalent Metal Ions, J. Memb. Sci., 500, 1-7, 2016.
7. Vazquez A., Foresti M.L., Moran J.I., and Cyras V.P., Extraction and Production of Cellulose Nanofibers, Handbook of
Polymer Nanocomposites. Processing, Performance and Application, Springer, London, 81-118, 2015.
8. TAPPI, Proposed New TAPPI Standard: Standard Terms and Their Definition for Cellulose Nanomaterial, Draft for Review, WI 3021.
9. Klemm D., Kramer F., Moritz S., Lindström T., Ankerfors M., Gray D., and Dorri A., Nanocelluloses: A New Family of Nature- Based Material, Angew. Chem. Int. Ed., 50, 5438 – 5466, 2011.
10. Abdul Khalil H.P.S., Davoudpour Y., Islam M.N., Mustapha A., Sudesh K., Dungani R., and Jawaid M., Production and
Modification of Nanofibrillated Cellulose Using Various Mechanical Processes: A Review, Carbohydr. Polym., 99, 649–
665, 2014.
11. Masruchin N., Park B.D., Causin V., and Um I.C., Characteristics of TEMPO-Oxidized Cellulose Fibril-Based Hydrogels
Induced by Cationic Ions and Their Properties, Cellulose, 22, 1993–2010, 2015.
12. Onyianta A.J., Dorris M., and Williams R.L., Aqueous Morpholine Pre-treatment in Cellulose Nanofibril (CNF) Production: Comparison with Carboxymethylation and TEMPO Oxidisation Pre-Treatment Methods, Cellulose, 25, 1047-1064, 2017.
13. Nechyporchuk O., Belgacem M.N., and Pignon F., Current Progress in Rheology of Cellulose Nanofibril Suspensions,
Biomacromolecules, 17, 2311–2320, 2016.
14. Kumar V., Ottesen V., Syverud K., Gregersen Ø.W., and Toivakka M., Coatability of Cellulose Nanofibril Suspensions:
Role of Rheology and Water Retention, Cellulose, 15, 571– 580, 2017.
15. Hubbe M.A., Ferrer A., Tyaga P., Yin Y., Salas C., Pal L., and Rojas O.J., Nanocellulose in Thin Films, Coating and Plies for
Packaging Applications: A Review, BioResources, 12, 2143- 2233, 2017.
16. Liu C., Du H., Dong L., Wang X., Zhang Y., Yu G., Li B., et al., Properties of Nanocelluloses and Their Application as
Rheology Modifier in Paper Coating, Ind. Eng. Chem. Res., 56, 8264–8273, 2017.
17. Karppinen A., Seppälä J., and Pietikäinen P., Rheology and Flocculation of Polymer-Modified Microfibrillated Cellulose
Suspensions, Ph.D. Thesis, Aalto University of Finland, October 2014.
18. Kavanagh G.M. and Ross-Murphy S.B., Rheological Characterisation of Polymer Gels, Prog. Polym. Sci., 23, 533−562,
1998.
19. Naderi A. and Lindström T., Rheological Measurements on Nanofibrillated Cellulose Systems: A Science in Progress,
Cellulose and Cellulose Derivatives: Synthesis, Modification and Applications, Nova Science, New York, USA, 2015.
20. Nazari B., Kumar V., Bousfield D.W., and Toivakka M., Rheology of Cellulose Nanofibers Suspensions: Boundary Driven
Flow, J. Rheol., 60, 1151–1159, 2016.
21. Kumar V., Nazari B., Bousfield D.W., and Toivakka M., Rheology of Microfibrillated Cellulose Suspensions in Pressure-
Driven Flow, Appl. Rheol., 26, 43534, 2016. DOI: 10.3933/ APPLRHEOL-26-43534
22. Pääkkö M., Ankerfors M., Kosonen H., Nykänen A., Ahola S., Osterberg M., Ruokolainen J., et al., Enzymatic Hydrolysis
Combined with Mechanical Shearing and High Pressure Homogenization for Nanoscale Cellulose Fibrils and Strong
Gels, Biomacromoleculs, 8, 1934–1941, 2007.
23. Derakhshandeh B., Kerekes R.J., Hatzikiriakos S.G., and Bennington C.P.J., Rheology of Pulp Fibre Suspensions: A Critical
Review, Chem. Eng. Sci, 66, 3460–3470, 2011.
24. Spence K.L., Venditti R.A., Habibi Y., Rojas O.J, and Pawlak J.J., The Effect of Chemical Composition on Microfibrillar Cellulose Films from Wood Pulps: Mechanical Processing and Physical Properties, Bioresour. Technol, 101, 5961–5968,
2010.
25. Rezayati Charani P., Dehghani-Firouzabadi M.R., Afra E., and Shakeri A., Rheological Characterization of High Concentrated MFC Gel from Kenaf Unbleached Pulp, Cellulose, 20, 727–740, 2013.
26. Hubbe M.A., Tayeb P., Joyce M., Tyaga P., Kehoe M., Dimic- Misic K., and Pal L., Rheology of Nanocellulose-Rich Aqueous Suspensions: A Review, BioResources, 12, 9556-9661, 2017.
27. Ching Y.C., Ali M.E., Abdullah L.C., Choo K.W., Kuan Y.C., Julaihi S.J., Chuah C.H., et al., Rheological Properties of Cellulose Nanocrystal-Embedded Polymer Composites: A Review, Cellulose, 20, 1011- 1030, 2016.