بررسی عملکرد الکترولیت‌های پلیمری بر پایه پلی‌وینیلیدن‌ فلوئورید (PVDF) در باتری‌های یون لیتیم

نوع مقاله : تالیفی

نویسندگان

1 استادیار- دانشگاه صنعتی امیرکبیر

2 تهران، دانشگاه صنعتی امیرکبیر، گروه مستقل شیمی دانشگاه صنعتی امیرکبیر،

چکیده

پلیمر پلی‌وینیلیدن فلوئورید (PVDF) پلیمری نیمه‌بلوری است که به‌علت ویژگی‌های مطلوبی چون خواص دی‌الکتریکی عالی، استحکام مکانیکی مناسب، پایداری گرمایی زیاد، مقاومت شیمیایی خوب و همچنین قابلیت تشکیل غشا به‌طور گسترده در پژوهش‌های علمی و فرایندهای صنعتی استفاده می‌شود. غشاهای PVDF کاربردهای متنوعی در زمینه تصفیه آب، جداسازی گاز و نیز به‌عنوان جداساز و الکترولیت پلیمری در باتری یون لیتیم دارند. جداساز استفاده‌شده در باتری یون لیتیم باید دارای ضخامت کم و اندازه تخلخل و منافذ مناسب با استحکام مکانیکی خوب باشد. الکترولیت پلیمری بر پایه PVDF به‌علت پایداری الکتروشیمیایی در باتری یون لیتیم به‌عنوان ماده مناسبی برای ساخت جداکننده‌ها استفاده می‌شود. با وجود این، پلیمر PVDF خالص استفاده‌شده در آماده‌سازی الکترولیت پلیمری ممکن است باعث ایجاد اتصال کوتاه شود که بر عملکرد باتری اثر می‌گذارد. آمیخته‌سازی با سایر پلیمرها و افزودن پرکننده‌های معدنی و نانوذرات از روش‌های مؤثر برای بهبود عملکرد الکترولیت‌های پلیمری هستند. در این مقاله، الکترولیت‌های پلیمری بر پایه PVDF و الزامات عملکردی آن‌ها بررسی شده است. همچنین، روش‌های ساخت این الکترولیت و راهکارهای شناخته‌شده برای بهبود ویژگی‌های مکانیکی و الکتروشیمیایی آن‌ها شرح داده شده است. افزون بر این، رسانندگی یونی و عملکرد الکتروشیمیایی باتری یون لیتیم بر پایه PVDF نیز بحث می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Performance of Polymer Electrolytes Based on Polyvinylidene Fluoride (PVDF) in Lithium-ion Batteries

نویسندگان [English]

  • leila naji 1
  • maral fouladvand 2
  • Mehran Javanbakht 2
1
2 Department of Chemistry, Amirkabir Univeristy of Technology Iran, Tehran,
چکیده [English]

Polyvinylidene fluoride (PVDF) is a semicrystalline polymer which has been extensively
applied in scientific research and industrial processes owing to its desirable features
such as excellent dielectric properties, suitable mechanical resistance, high thermal stability,
good chemical resistance. PVDF membranes can be applied in a wide range of applications
including waste water treatment, gas separation, and separator and polymer electrolyte in
lithium ion batteries. PVDF-based polymer electrolytes in lithium ion batteries should have
low thickness as well as an appropriate porosity with good mechanical strength and high
electrochemical stability. Applying pristine PVDF based polymer electrolytes may cause
internal short circuit which will influence the performance of the Li-ion batteries. Blending
PVDF with other polymers and incorporation of inorganic fillers have been considered as
effective methods to improve the performance of PVDF-based electrolytes. In this paper,
PVDF-based electrolytes and their performance requirements have been investigated. The
fabrication methods of PVDF membranes and the known strategies which are applied to
improve their mechanical and electrochemical characteristics have also been described.
Furthermore, the ionic conductivity and electrochemical performance of PVDF-based
lithium-ion batteries are discussed.

کلیدواژه‌ها [English]

  • lithium ion battery
  • polymer electrolyte
  • polyvinylidene fluoride (PVDF)
  • PVDF nanocomposites
  • ionic conductivity
1. Yang M. and Hou J., Membranes in Lithium Ion Batteries, Membranes, 2, 367-383, 2012.
2. Navarchian A., Maazi S., and Monsefpour M., Polymer Application in Construction of Lithium-ion Batteries: A Review, Polymerization (Persian), 6, 23-33, 2016.
3. Lee H., Yanilmaz M., Toprakci O., Fu K., and Zhang X., A Review of Recent Developments in Membrane Separators for Rechargeable Lithium-ion Batteries, Energy Environ. Sci., 7, 3857-3886, 2014.
4. Fenton D.E., Complexes of Alkali Metal Ions with Poly(etylene oxide), Polymer, 14, 589, 1973.
5. Liu J., Wu X., He J., Li J., and Lai Y., Preparation and Performance of A Novel Gel Polymer Electrolyte Based on
Poly(vinylidene fluoride)/Graphene Separator for Lithium Ion Battery, Electrochim. Acta, 235, 500-507, 2017.
6. Long L., Wang S., Xiao M., and Meng Y., Polymer Electrolytes for Lithium Polymer Batteries, J. Mater. Chem. A, 4,
10038-10069, 2016.
7. Polymer Electrolytes: Fundamentals and Applications, Sequeira C. and Santos D. (Eds.), Woodhead, Oxford, 1st ed., 272-273, 2010.
8. Yousefi A.A., Polyvinylidene Fluoride Nanocomposites and Their Properties, Polymerization (Persian), 6, 18-32, 2016.
9. Wang Q., Song W.-L., Fan L.-Z., and Song Y., Facile Fabrication of Polyacrylonitrile/Alumina Composite Membranes
Based on Triethylene Glycol Diacetate-2-Propenoic Acid Butyl Ester Gel Polymer Electrolytes for High-Voltage Lithiumion Batteries, J. Membr. Sci., 486, 21-28, 2015.
10. Cui W.-W., Tang D.-Y., and Gong Z.-L., Electrospun Poly(vinylidene fluoride)/Poly(methyl methacrylate) GraftedTiO2 Composite Nanofibrous Membrane as Polymer Electrolyte for Lithium-ion Batteries, J. Power Sources, 223, 206- 213, 2013.
11. Zhang S.S., A Review on the Separators of Liquid Electrolyte Li-ion Batteries, J. Power Sources, 164, 351-364, 2007.
12. Shahin M. and Tavakoli M., Fluoropolymer Membranes: Some New Approaches in Preparation and Surface Modification, Polymerization (Persian), 4, 4-21, 2015.
13. Song J.Y., Wang Y.Y., and Wan C.C., Review of Gel-Type Polymer Electrolytes for Lithium-Ion Batteries, J. Power
Sources, 77, 183-197, 1999.
14. Kammoun M., Berg S., and Ardebili H., Flexible Thin-Film Battery Based on Graphene-Oxide Embedded in Solid Polymer Electrolyte, Nanoscale, 7, 17516-17522, 2015.
15. Abbrent S., Lindgren J., Tegenfeldt J., and Wendsjö Å., Gel Electrolytes Prepared from Oligo(Ethylene Glycol)Dimethacrylate: Glass Transition, Conductivity and Li+-Coordination, Electrochim. Acta, 43, 1185-1191, 1998.
16. Elashmawi I.S., Alatawi N.S., and Elsayed N.H., Preparation and Characterization of Polymer Nanocomposites Based on PVDF/PVC Doped with Graphene Nanoparticles, Results Phys., 7, 636-640, 2017.
17. Zhu Y., Yin M., Liu H., Na B., Lv R., Wang B., and Huang Y., Modification and Characterization of Electrospun
Poly(vinylidene fluoride)/Poly(acrylonitrile) Blend Separator Membranes, Composites Part B, 112, 31-37, 2017.
18. Iijima T., Toyoguchi Y., and Eda N., Quasi-Solid Organic Electrolytes Gelatinized with Polymethyl-Methacrylate and
Their Applications for Lithium Batteries, Denki Kagaku, 53, 619-623, 1985.
19. Raghavan P., Zhao X., Manuel J., Chauhan G.S., Ahn J.-H., Ryu H.-S., Ahn H.-J., Kim K.-W., and Nah C., Electrochemical Performance of Electrospun Poly(vinylidene fluoride-cohexafluoropropylene)- Based Nanocomposite Polymer Electrolytes Incorporating Ceramic Fillers and Room Temperature Ionic Liquid, Electrochim. Acta, 55, 1347-1354, 2010.
20. Kang G.-d. and Cao Y.-m., Application and Modification of Poly(vinylidene fluoride) (PVDF) Membranes–A Review, J. Membr. Sci., 463, 145-165, 2014.
21. Zhu Y., Wang F., Liu L., Xiao S., Chang Z., and Wu Y., Composite of a Nonwoven Fabric with Poly(vinylidene fluoride) as a Gel Membrane of High Safety for Lithium Ion Battery, Energy Environ. Sci., 6, 618-624, 2013.
22. Watanabe M., Kanba M., Matsuda H., Tsunemi K., Mizoguchi K., Tsuchida E., and Shinohara I., High Lithium Ionic Conductivity of Polymeric Solid Electrolytes, Macromol. Rapid. Commun., 2, 741-744, 1981.
23. Choe H.S., Giaccai J., Alamgir M., and Abraham K.M., Preparation and Characterization of Poly(Vinyl Sulfone)- and Poly(Vinylidene Fluoride)-Based Electrolytes, Electrochim. Acta, 40, 2289-2293, 1995.
24. Boudin F., Andrieu X., Jehoulet C., and Olsen I.I., Microporous PVdF Gel for Lithium-Ion Batteries, J. Power Sources, 81-82, 804-807, 1999.
25. Idris N.H., Rahman M.M., Wang J.Z., and Liu H.K., Microporous Gel Polymer Electrolytes for Lithium Rechargeable
Battery Application, J. Power Sources, 201, 294-300, 2012.
26. Sabrina Q., Majid N., and Prihandoko B., Application of PVDF Composite for Lithium-Ion Battery Separator, J. Phys. Conf. Ser., 776, 361-366, 2016.
27. Zhang P., Yang L.C., Li L.L., Ding M.L., Wu Y.P., and Holze R., Enhanced Electrochemical and Mechanical Properties of P(VDF-HFP)-Based Composite Polymer Electrolytes with SiO2 Nanowires, J. Membr. Sci., 379, 80-85, 2011.
28. Berthier C., Gorecki W., Miner M., Armand M., Chabagno J., and Rigand D., Increasing the Conductivity of Polymer Solid: A Review, Solid. State. Ion, 36, 165-169, 1989.
29. Mahendran O. and Rajendran S., Ionic Conductivity Studies in PMMA/PVdF Polymer Blend Electrolyte with Lithium
Salts, Ionics, 9, 282-288, 2003.
30. Fasciani C., Panero S., Hassoun J., and Scrosati B., Novel Configuration of Poly(vinylidenedifluoride)-Based Gel Polymer Electrolyte for Application in Lithium-ion Batteries, J. Power Sources, 294, 180-186, 2015.
31. Rajendran S., Kannan R., and Mahendran O., An Electrochemical Investigation on PMMA/PVdF Blend-Based Polymer Electrolytes, Mater. Lett., 49, 172-179, 2001.
32. Hakkak F., Rafizadeh M., Sarabi A.A., and Yousefi M., Optimization of Ionic Conductivity of Electrospun Polyacrylonitrile/ Poly(vinylidene fluoride)(PAN/PVdF) Electrolyte Using the Response Surface Method (RSM), Ionics, 21, 1945-1957, 2015.
33. Ding Y., Zhang P., Long Z., Jiang Y., Xu F., and Di W., Preparation of PVdF-Based Electrospun Membranes and Their Application As Separators, Sci. Technol. Adv. Mat., 9, 015005,
2008.34. Zhang M.Y., Li M.X., Chang Z., Wang Y.F., Gao J., Zhu Y.S., Wu Y.P., and Huang W., A Sandwich PVDF/HEC/PVDF Gel Polymer Electrolyte for Lithium Ion Battery, Electrochim. Acta, 245, 752-759, 2017.
35. Xiao Q., Li Z., Gao D., and Zhang H., A Novel Sandwiched Membrane As Polymer Electrolyte for Application in Lithium- ion Battery, J. Membr. Sci., 326, 260-264, 2009.
36. Tian Khoon L., Ataollahi N., Hassan N.H., and Ahmad A., Studies of Porous Solid Polymeric Electrolytes Based on
Poly(vinylidene fluoride) and Poly(methyl methacrylate) Grafted Natural Rubber for Applications in Electrochemical
Devices, J. Solid State Electrochem., 20, 203-213, 2016.
37. Deng F., Wang X., He D., Hu J., Gong C., Ye Y.S., Xie X., and Xue Z., Microporous Polymer Electrolyte Based on PVDF/ PEO Star Polymer Blends for Lithium Ion Batteries, J. Membr. Sci., 491, 82-89, 2015.