مروری بر کاربرد فناوری چاپ سه‌بعدی در سامانه‌های نوین دارورسانی

نوع مقاله : تالیفی

نویسندگان

1 گروه سامانه های دارورسانی، پژوهشگاه پلیمر و پتروشیمی ایران، صندوق پستی 115-14965

2 بخش مهندسی پزشکی، گروه مهندسی علوم زیستی، دانشکده علوم و فنون نوین، دانشگاه تهران

3 پژوهشگاه پلیمر و پتروشیمی ایران

چکیده

در فرایند چاپ سه‌بعدی، اجسام به‌کمک مدل دیجیتالی با قرارگیری لایه‌به‌لایه مواد روی هم ساخته می‌شوند. در سال‌های اخیر، کاربرد روش چاپ سه‌بعدی در ساخت فراورده‌های دارویی با قابلیت رهایش کنترل‌شده دارو مورد توجه قرار گرفته است. از مزایای این روش می‌توان به قابلیت ساخت اشکال دارویی سفارشی برای هر بیمار با شکل هندسی پیچیده همراه با بارگذاری هم‌زمان چند دارو و مواد افزودنی مختلف اشاره کرد. این فن برای ساخت فراورده‌های حاوی داروهای کم‌محلول، پپتیدها،‌ داروهای قوی و دست‌یابی به الگوی رهایش چنددارویی استفاده می‌شود. اشکال دارویی چاپ‌شده با این روش بر اساس نیاز هر بیمار با در‌نظر گرفتن سن، نژاد، وزن و جنسیت دارای اثربخشی بیشتر و سمیت و عوارض جانبی کمتر هستند. چاپگرهای سه‌بعدی از لحاظ روش کار و نوع مواد اولیه، انواع مختلفی دارند. در عرصه پزشکی سه نوع چاپگر شامل چاپگرهای رسوبی نازلی، جوهرافشان و لیتوگرافی سه‌بعدی رایج‌تر هستند. ضروری است، برای به‌دست آوردن نیم‌رخ رهایش مطلوب دارو، پارامترهایی مانند پایداری دارو و ظرفیت بارگذاری آن در هر روش چاپ درنظر گرفته شوند. در این مقاله، فن چاپ سه‌بعدی و سخت‌افزارهای آن معرفی و پژوهش‌های انجام‌شده در سال‌های اخیر در زمینه رهایش کنترل‌شده دارو نیز مرور می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of 3D Printing Technology in Novel Drug Delivery Systems: A Review

نویسندگان [English]

  • Arezou Mashak 1
  • Azadeh Ghaee 2
  • Hamid Mobedi 3
1 Department of Novel Drug Delivery Systems, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
2 2Department of life science engineering, Faculty of new sciences and technologies, University of Tehran, Tehran, Iran
3 Department of Novel Drug Delivery Systems, Iran Polymer and Petrochemical Institute, P.O. Box: 14965/115, Tehran, Iran
چکیده [English]

In 3D printing process, objects are made using a digital model data by adding a material, as layer by layer, to produce a desired geometry. In recent years, the application of 3D printing technology has been considered for the manufacture of pharmaceutical products with the ability of controlled drug delivery. The advantages of this approach include the ability to prepare personalized dosage forms for each patient with complex geometrical shapes along with simultaneous loading of several different drugs and excipients. Manufacturing of products containing low-solubility drugs, potent drugs and peptides as well as achieving the release of multi-drugs profiles are possible through 3D printing technique. The prepared dosage forms by 3D printing method based on patient's needs in considering his/her age, race, weight and gender could achieve more drug efficacy and less toxicity and side effects. 3D printers are of different types according to the working methods and initial materials. The most suitable techniques for 3D printing of medicines are nozzle-based deposition, printing-based inkjet systems and stereolithography. It is necessary to consider several parameters such as drug stability and drug loading capacity in a 3D printing technology to acquire an optimal drug release profile. This review introduces 3D printing technique and the related hardware commonly used. This article also summarizes the variety of dosage forms obtained using this technology.

کلیدواژه‌ها [English]

  • 3D printing technique
  • additive manufacturing
  • rapid prototyping
  • novel drug delivery systems
  • drug release profile
1.Norman J., Madurawe R., Moore C., Khan M., and Khairuzzaman A., A New Chapter in Pharmaceutical Manufacturing: 3D-printed Drug Products, Adv. Drug Delivery Rev., 108, 39-50, 2017.
2.Ventola C.L., Medical Applications for 3D Printing: Current and Projected Uses, Pharm. Ther., 39, 704-711, 2014.
3.Maulvi F.A., Shah M.J., Solanki B.S., Patel A.S., Soni T.G., and Shah D.O., Application of 3D Printing Technology in the Development of Novel Drug Delivery Systems, Int. J. Drug Dev. Res., 9, 44-49, 2017.
4.IDC Press Release, Worldwide Spending on 3D Printing Forecast to Grow at a Compound Annual Rate of 22.3% to Nearly $29 Billion in 2020, According to IDC's 3D Printing Spending Guide, https://www.idc.com/getdoc.jsp?containerId=prUS42211417, available in 9 Jan 2017.
5.Prasad L.K. and Smyth H., 3D Printing Technologies for Drug Delivery: A Review, Drug Dev. Ind. Pharm., 42, 1019-1031, 2016.
6.Klein G.T., Lu Y., and Wang M.Y., 3D Printing and Neurosurgery- Ready for Prime Time?, World Neurosurg., 80, 233-235, 2013.
7.Mashak A. and Rahimi A., Silicone Polymers in Controlled Drug Delivery Systems: A Review, Iran. Polym. J., 18, 279-295, 2009.
8.Jassim-Jaboori A.H. and Oyewumi M.O., 3D Printing Technology in Pharmaceutical Drug Delivery: Prospects and Challenges, J. Biomol. Res. Ther., 4, e141, 2015, doi:10.4172/2167-7956.1000e141
9.Alhnan M.A, Okwuosa T.C., Sadia M., Wan K.W., Ahmed W., and Arafat B., Emergence of 3D Printed Dosage Forms: Opportunities and Challenges, Pharm. Res., 33, 1817-1832, 2016.
10. Khaled S.A., Burley J.C., Alexander M.R., Yang J., and Roberts C.J., 3D Printing of Five-in-One Dose Combination Polypill with Defined Immediate and Sustained Release Profiles, J. Controlled Release, 217, 308-314, 2015.
11.Rattanakit P., Moulton S.E., Santiago K.S., Liawruangrath S., and Wallace G.G., Extrusion Printed Polymer Structures: A Facile and Versatile Approach to Tailored Drug Delivery Platforms, Int. J. Pharm., 422, 254-263, 2012.
12.Ferris C.J., Gilmore K.J., Wallace G.G., and Panhuis M., Modified Gellan Gum Hydrogels for Tissue Engineering Applications,Soft Matter, 9, 3705-3711, 2013.
13.Chung J.H.Y., Naficy S., Yue Z., Kapsa R.M.I., Quigley A., Moulton S.E., and Wallace G.G., Bio-ink Properties and Printability for Extrusion Printing Living Cells, Biomater. Sci., 1, 763-773, 2013.
14.Konta A.A., García-Piña M., and Serrano D.R., Personalised 3D Printed Medicines: Which Techniques and Polymers Are More Successful? Bioengineering, 4, 1-16, 2017.
15.Aho J., Boetker J.P., Baldursdottir S., and Rantanen J., Rheology as a Tool for Evaluation of Melt Processability of Innovative Dosage Forms, Int. J. Pharm., 494, 623-642, 2015.
16.Murphy S.V. and Atala A., 3D Bioprinting of Tissues and Organs, Nat. Biotechnol., 32, 773-785, 2014.
17.Sun Q., Rizvi G.M., Bellehumeur C.T., and Gu P., Effect of Processing Conditions on the Bonding Quality of FDM Polymer Filaments, Rapid Prototyp. J., 14, 72-80, 2008.
18.Khaled S.A., Burley J.C., Alexander M.R., and Roberts C.J., Desktop 3D Printing of Controlled Release Pharmaceutical Bilayer Tablets, Int. J. Pharm., 461, 105-111, 2014.
19.Goyanes A., Kobayashi M., Martínez-Pacheco M., Gaisford S., and Basita A.W., Fused-filament 3D Printing of Drug Products: Microstructure Analysis and Drug Release Characteristics of PVA-based Caplets, Int. J. Pharm., 514, 290-295, 2016.
20.Gbureck U., Vorndran E., Müller F.A., and Barralet J.E., Low Temperature Direct 3D Printed Bioceramics and Biocomposites as Drug Release Matrices, J. Controlled Release, 122, 173-180, 2007.
21.Solutions P., 3 Types of Plastic Used in 3D Printing, https://www.polymersolutions.com/blog/plastic-in-3d-printing/ available in 31 May, 2016.
22.Yi H.G., Choi Y.J., Kang K.S., Hong J.M., Pati R.G., Park M.N., Shim I,K., Lee C.M., Kim S.C., and Cho D.W., A 3D-printed Local Drug Delivery Patch for Pancreatic Cancer Growth Suppression, J. Controlled Release, 238, 231-241, 2016.
23.Huang W., Zheng Q., Sun W., Xu H., and Yang X., Levofloxacin Implants with Predefined Microstructure Fabricated by Three-Dimensional Printing Technique, Int. J. Pharm., 339, 33-38, 2007.
24.Lee B.K., Yun Y.H., Choi J.S., Choi Y.C., Kim J.D., and Cho Y.W., Fabrication of Drug-Loaded Polymer Microparticles with Arbitrary Geometries Using a Piezoelectric Inkjet Printing System, Int. J. Pharm., 427, 305-310, 2012.
25.Yu D.G., Branford-White C., Ma Z.H., Zhu L.M., Li X.Y., and Yang X.L., Novel Drug Delivery Devices for Providing Linear Release Profiles Fabricated by 3DP, Int. J. Pharm., 370, 160-166, 2009.
26.Wang C.C., Tejwani M.R., Roach W.J., Kay J.L., Yoo J., Surprenant H.L., Monkhouse D.C., and Pryor T.J., Development of Near Zero-Order Release Dosage Forms Using Three- Dimensional Printing ()3-DP™)( Technology, Drug Dev. Ind. Pharm., 32, 367-376, 2006.
27.Goyanes A., Martinez P.R., Buanz A., Basit A.W., and Gaisford S., Effect of Geometry on Drug Release From 3D Printed Tablets, Int. J. Pharm., 494, 657-663, 2015.
28.Goyanes A., Chang H., Sedough D., Hatton G.B., Wang J., Buanz A., Gaisford S., and Basit A.W., Fabrication of Controlled- Release Budesonide Tablets Via Desktop ()FDM)( 3D Printing, Int. J. Pharm., 496, 414-420, 2015.
29.Sadia M., Sosnicka A., Arafat B., Isreb A., Ahmed W., Kelarakis A., and Alhnan M., Adaptation of Pharmaceutical Excipients to FDM 3D Printing for the Fabrication of Patient-Tailored Immediate Release Tablets, Int. J. Pharm., 513, 659-668, 2016.
30. Genina N., Holländer J., Jukarainen H., Makila E., Salonen J., and Sandler N., Ethylene Vinyl Acetate ()EVA)( as a New Drug Carrier for 3D Printed Medical Drug Delivery Devices, Eur. J. Pharm. Sci., 90, 53-63, 2016.
31.Khaled, S., Extrusion Based 3D Printing as a Novel Technique for Fabrication of Oral Solid Dosage Forms, PhD Thesis, University of Nottingham, 2016.
32.Buanz A.B., Saunders M.H., Basit A.W., and Gaisford S., Preparation of Personalized-dose Salbutamol Sulphate Oral Films with Thermal Ink-Jet Printing, Pharm. Res., 28, 2386-2392, 2011.
33. Scoutaris N., Alexander M.R., Gellert P.R., and Roberts C.J., Inkjet Printing as a Novel Medicine Formulation Technique, J. Controlled Release, 156, 179-185, 2011.
34.Katstra W.E., Palazzolo R.D., Rowe C.W., Giritlioglu B., Teung P., and Cima M.J., Oral Dosage Forms Fabricated by Three Dimensional Printing, J. Controlled Release, 66, 1-9, 2001.
35.Yu D.G., Yang X.L., Huang W.D., Liu J., Wang Y.G., and Xu H., Tablets with Material Gradients Fabricated by Three-dimensional Printing, J. Pharm. Sci., 96, 2446-2456, 2007.
36.Wang J., Goyanes A., Gaisford S., and Basit A.W., Stereolithographic (SLA) 3D Printing of Oral Modified-Release Dosage Forms, Int. J. Pharm., 503, 207-212, 2016.
37.Goyanes A., Det-Amornrat U., Wang J., Basit A.W., and Gaisford S., 3D Scanning and 3D Printing as Innovative Technologies for Fabricating Personalized Topical Drug Delivery Systems, J. Controlled Release, 234, 41-48, 2016.