کامپوزیت‌ها و ژل‌های پلیمری مغناطیسی حاوی نانوذرات مگنتیت

نوع مقاله: تالیفی

نویسندگان

1 پژوهشگاه پلیمر و پتروشیمی ایران

2 عضو هیات علمی پژوهشگاه پلیمر و پتروشیمی ایران

چکیده

امروزه با توسعه دانش و فناوری نانو می‌توان در کنار حفظ خواص، با افزودن نانوذرات معدنی، به‌ویژه ذرات دارای خواص مغناطیسی، قابلیت‌های جدیدی را به مواد پلیمری القا کرد. به‌منظور حفظ خواص اولیه، پراکنش نانوذرات در ماتریس پلیمری باید به‌خوبی انجام شود. برای بهبود پراکنش در پلیمرهای آلی، راه‌های گوناگونی ارائه شده است. یکی از آن‌ها، اصلاح سطح نانوذرات با ترکیبات آلی حاوی گروه‌های عامل‌دار است که حتی می‌توانند در واکنش پلیمرشدن شرکت کنند. اغلب پلیمرهای آلی به‌دلیل ماهیت آب‌گریزی می‌توانند از این نانوذرات در برابر تخریب‌های محیطی محافظت کنند. نانوذرات و نانوکامپوزیت‌های مغناطیسی کاربردهای زیادی در تهیه رنگ، جوهر، حسگرها و ریزپردازنده‌ها، پزشکی، دارورسانی کنترل‌شده، کاتالیزگرها، تصفیه آب و جداسازی آلاینده‌ها دارند. پلیمرهای مغناطیسی از ویژگی‌هایی مانند چقرمگی،‌ فرایندپذیری آسان، انعطاف‌پذیری، قابلیت ارتجاعی و زیست‌سازگاری برخوردارند. بدین سبب و نیز به‌دلیل داشتن تغییرات شیمیایی و فیزیکی برگشت‌پذیر در پاسخ به میدان مغناطیسی خارجی، اهمیت این مواد روز‌به‌روز در حال افزایش است. اصلی‌ترین ویژگی پلیمرهای مغناطیسی، قابلیت آن‌ها در پاسخ به تغییرات میدان مغناطیسی خارجی است. زیرا این پلیمرها وقتی در معرض میدان مغناطیسی خارجی قرار می‌گیرند، ساختار آن‌ها به‌سرعت دچار تغییرات میکروسکوپی می‌شود. به همین صورت، پس از اینکه اثر میدان مغناطیسی خارجی از بین رفت، به‌سرعت به‌حالت اولیه خود برمی‌گردند. ژل‌ها و الاستومرهای پلیمری پاسخگو به میدان مغناطیسی، مثال‌هایی از این دست هستند که مورد توجه قرار گرفته‌اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Magnetic Polymeric Composites and Gels Containing Magnetite Nanoparticles

نویسندگان [English]

  • Alireza Mouraki 1
  • samira sanjabi 1
  • Ali REZA Mahdavian 2
1 Iran Polymer and Petrochemical Institute
2 Iran Polymer and Petrochemical Institute
چکیده [English]

Nowadays and with developments in science and technology of nanomaterials, polymers have displayed new capabilities by addition of inorganic nanoparticles like magnetic substances, besides retaining their natural characteristics. To maintain the initial properties, nanoparticles must be dispersed in the polymer matrix uniformly. Various ways have been proposed to improve this dispersion by modification of the nanoparticles surface with organic compounds. These functionalities can even participate in polymerization reactions or help their compatibilization. Most organic polymers can protect these nanoparticles against environmental degradation due to their hydrophobic nature. Magnetic nanoparticles and nanocomposites have several applications in dye, ink, sensors and microprocessors, medicine, controlled drug delivery, catalysts, water treatment and waste separation. Magnetic polymers have become increasingly important because of their properties such as toughness, easy processability, flexibility, elasticity and biocompatibility, as well as reversible chemical and physical changes in response to an external magnetic field. The main feature of these polymers is their ability to respond to changes in external magnetic field, as they quickly undergo microscopic changes structurally by on/off switching of the magnetic field. Magnetic gels and elastomers are some examples of these materials that have attracted much attention recently.

کلیدواژه‌ها [English]

  • magnetic nanoparticle
  • Polymer
  • Nanocomposite
  • magnetite
  • magnetic gel
1.Mahdieh A., Mahdavian A.R., and Salehi-Mobarakeh H., Chemical Modification of Magnetite Nanoparticles and Preparation of Acrylic-Base Magnetic Nanocomposite Particles via Miniemulsion Polymerization, MSc Thesis, Iran Polymer and Petrochemical Institute, February 2015.
2. Mahdavian A.R. and Mirrahimi M.A.S., Efficient Separation of Heavy Metal Cations by Anchoring Polyacrylic Acid on Superparamagnetic Magnetite Nanoparticles Through Surface Modification, Chem. Eng. J., 159, 264–271, 2010.
3.Mouraki A., Mahdavian A.R., and Salehi-Mobarakeh H., Preparation of Magnetic Nanocomposite Particles Based on Photochemical/Magnetite Acrylic Copolymer Containing Spiropyran by Miniemulsion Polymerization, MSc Thesis, Iran Polymer and Petrochemical Institute, March 2018.
4.Rahman M.M. and Elaissari A., Organic–Inorganic Hybrid Magnetic Latex, Hybrid Latex Particles, Springer, Berlin, Heidelberg, 237–281, 2010.
5.Lee J.J., Jeong K.J., Hashimoto M., Kwon A.H., Rwei A., and Shankarappa S.A., Synthetic Ligand-Coated Magnetic Nanoparticles for Microfluidic Bacterial Separation From Blood, Nano Lett., 14, 1–5, 2014.
6.Aguilar M. and Roman J., Smart Polymers and Their Applications, Woodhead, Cambridge, 584, 2014.
7.Weeber R., Hermes M., Schmidt A.M., and Holm C., Polymer Architecture of Magnetic Gels: A Review, J. Phys.: Condens. Matter, 30, 63-70, 2018.

8.Häring M., Schiller J., Mayr J., Grijalvo S., Eritja R., and Díaz D., Magnetic Gel Composites for Hyperthermia Cancer Therapy, Gels, 1, 135–161, 2015.
9. Szabó D., Czakó-Nagy I., Zrínyi M., and Vértes A., Magnetic and Mossbauer Studies of Magnetite-Loaded Polyvinyl Alcohol Hydrogels, J. Colloid Interface Sci., 221, 166–172, 2000.
10.Xulu P.M., Filipcsei G., and Zrínyi M., Preparation and Responsive Properties of Magnetically Soft Poly(N-isopropylacrylamide) Gels, Macromolecules, 33, 1716–1719, 2000.
11.Varga Z., Filipcsei G., and Zrínyi M., Magnetic Field Sensitive Functional Elastomers with Tuneable Elastic Modulus, Polym. J., 47, 227–233, 2006.
12. Filipcsei G., Zrínyi M., Szabo D., and Feher J., Polymer Gels and Networks: Electrical and Magnetic Field Sensitive Smart Polymer Gels, CRC, Boca Raton, FL, USA, 400, 2001.
13. Filipcsei G. and Zrínyi M., Magnetodeformation Effects and the Swelling of Ferrogels in a Uniform Magnetic Field, J. Phys.: Condens. Matter, 22, 76-85, 2010.
14.Mahdieh A., Mahdavian A.R., and Salehi-Mobarakeh H., Chemical Modification of Magnetite Nanoparticles and Preparation of Acrylic-Base Magnetic Nanocomposite Particles via Miniemulsion Polymerization, J. Magn. Magn. Mater., 426, 230–238, 2017.
15. Duan Y., Novel Preparation of Fe3O4/Styrene-co-Butyl Acrylate Composite Microspheres via a Phase Inversion Emulsion Process, Colloid. Polym. Sci., 295, 1757–1763, 2017.
16.Barrera G., Sciancalepore C., Messori M., Allia P., Tiberto P., and Bondioli F., Magnetite-Epoxy Nanocomposites Obtained by the Reactive Suspension Method: Microstructural, Thermo-Mechanical and Magnetic Properties, Eur. Polym. J., 94, 354–365, 2017.
17.Zhang Q., Zhang H., Xie G., and Zhang J., Effect of Surface Treatment of Magnetic Particles on the Preparation of Magnetic Polymer Microspheres by Miniemulsion Polymerization, J. Magn. Magn. Mater., 311, 140–144, 2007.
18.Espiard P. and Guyot A., Poly(ethyl acrylate) Latexes Encapsulating Nanoparticles of Silica: Grafting Process onto Silica, Polym. J., 36, 4391-4395, 1995.
19.Lien Y.H. and Wu T.M., Preparation and Characterization of Thermosensitive Polymers Grafted onto Silica-Coated Iron Oxide Nanoparticles, J. Colloid Interface Sci., 326, 517–521, 2008.
20.Yui N., Mrsny R.J., and Park K., Reflexive Polymers and Hydrogels: Understanding and Designing Fast Responsive Polymeric Systems, CRC, Boca Raton, FL, USA, 472, 2004.
21.Ramírez L.P. and Landfester K., Magnetic Polystyrene Nanoparticles with a High Magnetite Content Obtained by Miniemulsion Processes, Macromol. Chem. Phys., 204, 22–31, 2003.
22. Mahdavian A.R., Ashjari M., and Salehi-Mobarakeh H., Nanocomposite Particles with Core-Shell Morphology. I. Preparation and Characterization of Fe3O4-Poly(butyl acrylate- styrene) Particles via Miniemulsion Polymerization, J. Appl. Polym. Sci., 110, 1242–1249, 2008.
23.Mahdavian A.R., Sehri Y., and Salehi-Mobarakeh H., Nanocomposite Particles with Core–Shell Morphology II. An Investigation into the Affecting Parameters on Preparation of Fe3O4-Poly(butyl acrylate–styrene) Particles via Miniemulsion Polymerization, Eur. Polym. J., 44, 2482–2488, 2008.
24.Kim S.H., Sim J.Y., Lim J.M., and Yang S.M., Magnetoresponsive Microparticles with Nanoscopic Surface Structures for Remote-Controlled Locomotion, Angew. Chem. Int. Ed., 49, 3786–3790, 2010.
25. Zhu L., Yang X., and Cao Y., Preparation of Surface-Imprinted Polymer Magnetic Nanoparticles with Miniemulsion Polymerization for Recognition of Salicylic Acid, Anal. Lett., 46, 982–998, 2013.
26.Lepock J.R., Cellular Effects of Hyperthermia: Relevance to the Minimum Dose for Thermal Damage, Int. J. Hyperth., 19, 252–266, 2003.
27. Kim D.H., Lee S.H., Kim K.N., Kim K.M., Shim I.B., and Lee Y.K., Temperature Change of Various Ferrite Particles with Alternating Magnetic Field for Hyperthermic Application, J. Magn. Magn. Mater., 293, 320–327, 2005.
28.Gilchrist A.D., Electrical Generating Systems, US. Pat. No. 2,781,486, 1957.
29.Kolenko Y.V., Bañobre-López M., Rodríguez-Abreu C., Carbó- Argibay E., Sailsman A., and Piñeiro-Redondo Y., Large-Scale Synthesis of Colloidal Fe3O4 Nanoparticles Exhibiting High Heating Efficiency in Magnetic Hyperthermia, J. Phys. Chem. C, 118, 8691–8701, 2014.
30.Varadan V. K., Chen L., and Xie J., Nanomedicine , John Wiley and Sons, Chichester, UK., 484, 2008.