A Review on the Synthesis and Characterization of Polytetrahydrofuran Polyethyleneglycol (TPEG) Block Copolymer Binder

Document Type : compile

Authors

1 Assistant Professor/Imam Hussein Comprehensive University

2 Imam Hossein University, Technical Department, Chemical Engineering Group

3 Imam Hossein University/Technical Department/ Chemical Engineering Department

Abstract

Today, polymer materials are widely used due to their diverse properties, low cost, and easy mass production. Polytetrahydrofuran polyethylene glycol (TPEG) block copolymer is one of the prepolymers and precursors of polyurethanes. Polytetrahydrofuran polyethylene glycol block copolymer binder with its flexibility property increases flexibility and elongation, and as a result improves polyurethane properties. In the present work, the synthesis of polyether by chemical depolymerization method from polymer raw materials has been reviewed. TPEG is a hydroxyl-terminated polyether that is synthesized from the raw materials of polytetrahydrofuran (PTHF) and polyethylene glycol (PEG) in the presence of an acid catalyst (sulfuric acid) by chemical polymerization reaction. The synthesis has two simultaneous stages: polymerization of polytetrahydrofuran with an acid catalyst and then coupling the obtained product with polyethylene glycol. Factors such as reaction time and temperature, molecular weight and molar ratio of the reactants and acid catalyst concentration affect the molecular weight and the yield of production. In this copolymer, tetrahydofuran blocks form the soft segment and ethylene oxide blocks form the hard segment of the copolymer. The ratio of the soft segment to the hard segment of this polymer plays an important role in determining properties such as viscosity, density, and glass transition temperature (Tg). Characterization of this polymer is done using various tests including Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), carbon and proton nuclear magnetic resonance spectroscopy (13C NMR and 1H NMR). Researches show that the resulting copolymer is a random block copolymer. The glass transition temperature and melting point of TPEG are -73.5 ℃ and 8.74 ℃, respectively.

Keywords

Main Subjects


1.  William  G.R. and Callister Jr., Materials Science and Engineering: An Introduction, 10 ed., Wiley, New York, 536-549, 
2018.
2.  Liliu W.,  Cation-Catalyzed Ring-Opening Graft Co- and   Terpolymerization. Photoinitiated Cation-Catalyzed Ringo-
pening Graft Graft Co- and Terpolymerization, PhD Thesis, University of  Michigan.1980  ,
3.  Mason R., Solid Propellants,  Rubber Chem. Technol.,  92, 1-24,  2019.
4.  Comfort T., Shanholtz C., and Fletcher G., Progress In HTPE Propellants, NDIA 39th Annual Gun and Ammunition/Missiles and Rocket Conference, Baltimore, USA, 13-16, April 2004.
5.  Haren X., Zhu H., and Sun T., Method of Synthesizing Block HTPE Copolymer, China Pat. Appl. 201210547522, 4, 2012.
6.  Esiyok H., A Study on Hydroxyl Terminated Polyether Based Composite Propellants, PhD Thesis, Middle East Technical 
University, 2016.
7.  Caro I.R., Hydroxy-Terminated Polyether Binders For Composite Rocket Propellants, PhD Thesis, Defence and Security, Cranfield University, 2006.
8.  Bednarek M., Kubisa P., and Penczek S., Coexistence of   Activated Monomer and Active Chain End Mechanisms in 
Cationic Copolymerization of Tetrahydrofuran with Ethylene Oxide, Macromolecules,  32, 5257-5263, 1999.
9.  Caro R. and Bellerby J., Characterization and Comparison of Two Hydroxyl-Terminated Polyether Prepolymers,  Int. J.   
Energ. Mater. Chem. Propul., 9, 351-364, 2010.
10. Mao K., Xia M., and Luo Y., Thermal and Mechanical   Properties of Two Kinds of Hydroxyl-Terminated Polyether 
Prepolymers and the Corresponding Polyurethane Elastomers,   J. Elastomers Plast., 48, 546–560, 2016.
11. Zhang H., Chang H., Li J., Li X., and Wang H., High-Strain-Rate Mechanical Response of  HTPE Propellant Under SHPB 
Impact Loading, AIP Adv., 11, 035145, 2021.
12. Wu W., Zhang X., Jin P., Zhao S., and Luo Y., Mechanism of PSAN Effect on Slow Cook-off Response of HTPE Propellant, Thermochim.  Acta, 715, 179291, 2022.
13. Xue X., Ye Q., and Yu Y., Thermal Safety of Solid Rocket Motor with Complex Charge Structure,  Appl. Therm. Eng., 
222, 119932, 2023.
14. Liang B., Zhang N., Zhang Z., Ren R., and Luo Y., Study on the Properties of the Liner of HTPE Propellant, Sci. Technol. 
Energ. Mater., 82, 70-74, 2021.
15. Voorhees K.J., Baugh S.F., and Stevenson D.N., An Investigation   of the Thermal Degradation of Poly(ethylene glycol), J. Anal. Appl. Pyrolysis, 30, 47-57, 1994.
16. Costa L., Cameron G., and Qureshi M.Y., The Thermal and Thermo-oxidative Degradation of Poly(tetrahydrofuran) and 
Its Complexes with Libr and Lii, Polym. Degrad. Stab., 67, 527-533, 2000.
17. Enthaler S., Zinc(II)-Triflate as Catalyst Precursor for Ring-Closing Depolymerization of End-of-Life Polytetrahydrofuran to Produce Tetrahydrofuran, J. Appl. Polym. Sci., 131, 39791, 2014.
18. Enthaler S., Zinc-Catalyzed Depolymerization of Polyethers to Produce Valuable Building Blocks, Catal. Lett., 144, 850-
859, 2014.
19. Enthaler S. and Weidauer M., Low-Temperature Iron-Catalyzed Depolymerization of Polyethers, Chemsuschem, 5, 
1195-1198,  2012.
20. Wang Y., Hou Y., and Song H., Ring-Closing Depolymerization of Polytetrahydrofuran to Produce Tetrahydrofuran Using Heteropolyacid as Catalyst, Polym. Degrad. Stab., 144, 17-23, 2017.
21. Enthaler S. and Weidauer M., Zinc-Catalyzed Depolymerization of Artificial Polyethers, Chem. Eur. J., 18, 1910-1913, 2012.
22. Maeno Z., Midogochi K., Mitsudome T., Mizugaki T., and Jitsukawa K., Synthesis of Glycol Diesters Through the 
Depolymerization of Polyethylene Glycols with Carboxylic Acids Using a Proton-Exchanged Montmorillonite Catalyst, 
Tetrahedron Lett.,  59, 832-835, 2018.
23. Pruckmayr O., Block Copolyethers via Oxonium Copling of Poly(tetramethyleneether) Glycols, US Pat. 5,284,980, 1994.
24. Morkeseth H. and Sorensen S.J., Preparation of TPEG, and Curing and Characterization of TPEG-Based Polymer 
Matrices,  https://  www.ffi.no/en/publications-  archive/fremstilling-av-tpeg-og-herding-og-karakterisering-av-tpeg-
baserte-polymermatriser, available in  26 June 2020. 
25. Fan W.W., Fan X.D., Tian W., Liao X.Q., Zhang W.B., Mu C.G., and Kong J., Poly(ethylene glycol)-Poly(tetrahydrofuran)-
Poly(ethylene glycol) Triblock Copolymer: Synthesis, Crystallization Behavior and Novel Morphology,  Express 
Polym. Lett.,  7, 416-430, 2013.
26. Song X., Wang W., and Xin- Hao L., Review on HTPE Propellants,  Chin. J. Energ. Mater.,  16, 349-352, 2008.
27. Wen X., Zhang G., Chen K., Yuan S., and Luo Y., Enhancing the Performance of an HTPE Binder by Adding a Novel 
Hyperbranched Multi-arm Azide Copolyether, Prop. Explos. Pyrotech.,  45, 1–12, 2020.
28. Zhang F.X., Fan W., and Zhou X., Study of Anionic Ring-Opening Polymerization and Macromolecular Structure Char-
acterization for Poly(ethylene oxide)-Poly(tetrahydrofuran)-Poly(ethylene oxide) Triblock Copolymer, Asian J. Chem., 26, 
6391-6395, 2014.
29. Hovetborn T., Holscher M., Keul H. and Hocker H., Poly(ethylene oxide-co-tetrahydrofuran) and Poly(propylene 
oxide-co-tetrahydrofuran): Synthesis and Thermal Degradation, Rev. Roum. Chim.,  51, 781, 2006.
30. Bednarek M. and Kubisa P., Mechanism of Cyclics Forma-tion in the Cationic Copolymerization of Tetrahydrofuran with Ethylene Oxide in the Presence of Diols, Macromol. Chem. Phys., 200, 2443-2447, 1999.
31. Deluca L., Innovative Solid Formulations for Rocket Propulsion, Eurasian Chem. Technol. J., 18, 181-196, 2016.