A Review of the Antibacterial Properties of Chitosan Nanocomposites Containing Metal Nanoparticles for Using in Wound Healing

Document Type : compile

Authors

1 Department of Chemistry, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Tehran, Iran

2 Polymer Engineering Group, Faculty of Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran.

3 Department of Chemistry, Shahre-Qods Branch, Islamic Azad University, Shahre-Qods 37515-374, Tehran, Iran.

Abstract

Chitosan (CS) as a natural polymer has been widely studied in the field of wound healing due to its useful properties including non-toxicity, excellent biological properties, biodegradability and promotion of collagen deposition. However, low mechanical strength and moderate antibacterial properties are disadvantages that limit its further clinical application. Chitosan is a copolymer with a linear chain of diglucosamine and N-acetyl beta-glucosamine, which is produced by deacetylation of chitin. The deacetylation leads to the formation of cationic amine groups, which is actually a prerequisite for the antibacterial function of chitosan. Many researchers have adopted the use of nanotechnology, especially metal nanoparticles (MNPs), in order to improve the mechanical strength and specific antibacterial properties of chitosan composites with promising results. In addition, chitosan naturally acts as a reducing agent for metal nanoparticles, which can also reduce cytotoxicity. Therefore, chitosan in combination with metal nanoparticles exhibits antibacterial activity, excellent mechanical strength and anti-inflammatory properties and has great potential to accelerate the wound healing process. It is worth mentioning that the mechanism of action of metal nanoparticles is dose-dependent and excessive concentration can cause significant cytotoxicity. The loading efficiency and release rate of metal nanoparticles changes according to the manufacturing process. Hence, further investigation of dosage and preparation methods is a necessary prerequisite for clinical applications.

Keywords

Main Subjects


1.  Alipour H., Koosha M., Sarraf  Shirazi M.J.,  and  Jebali A., Modern  Commercial  Wound  Dressings  and  Introducing 
New  Wound  Dressings  for  Wound  Healing: A  Review, Polymerization (Persian),  6, 65-80, 2017.
2.  Chouhan D., Dey N., Bhardwaj N., and Mandal B.B., Emerging and Innovative Approachesfor Wound Healing and Skin 
Regeneration: Current Status and Advances, Biomaterials, 216, 119267, 2019.
3.  Yang J.A., Yeom J., Hwang B.W., Hoffman A.S., and Hahn S.K., In Situ Forming Injectable Hydrogels for Regenerative 
Medicine,  Prog. Polym. Sci.,  39, 1973-1986, 2014.
4.  Hosseini M. and Mobedi H., Injectable In-Situ  Forming Drug Delivery Systems Based on Biodegradable Polymers, 
Basparesh,  6, 3-12, 2016. 
5.  Kamoun E.A., Kenawy E.R.S., and Chen X., A Review on Polymeric Hydrogel Membranesfor Wound Dressing Applications: PVA-Based Hydrogel Dressings,  J. Am. Acad. Derm.,  8, 217-233, 2017.
6.  Zahedi P., Rezaeian I., RanaeiSiadat S.O., Jafari S.H., and Supaphol P., A Review on Wound Dressings with an Emphasis 
on Electrospun Nanofibrous Polymeric Bandages, Polym. Adv. Technol., 21, 77-95, 2010.
7.  Wang K., Pan S., Qi Z., Xia P., Xu H., Kong W., Li H., Xue P., Yang X., and Fu C., Recent Advances in Chitosan-Based 
Metal Nanocomposites for Wound Healing Applications, Adv. Mater. Sci. Eng., 2020, Article ID 3827912, 1–13, 2020. 
8.  Ruel-Gariepy E. and Leroux J.-C., In Situ Forming Hydrogels: Review of Temperature-Sensitive Systems, Europ. J. Pharm. Biopharm., 58, 409-426, 2004.
9.  Dimatteo R., Darling N.J., and Segura T., In Situ Forming Injectable Hydrogels for Drug Delivery and Wound Repair, 
Adv. Drug. Deliv. Rev.,  127, 167-184, 2018.
10. Sharma S., Madhyastha H., Laxmi Swetha K., Maravajjala K.S., Singh A., Madhyastha R. et al., Development of an 
In-Situ Forming, Self-Healing Scaffold for Dermal Wound Healing: In-Vitro and In-Vivo Studies, Mater. Sci. Eng. C, 128, 
112263, 2021.
11. Castillo L., Castro-Alpízar J.A., Lopretti M., and Vega Baudrit J., Exploration of Bioengineered Scaffolds Composed of 
Thermo-responsive Polymers for Drug Delivery in Wound Healing,  Int. J. Mol. Sci., 22, 1408, 2021.
12. Zakerikhoob M., Abbasi S., Yousefi G., Mokhtari M., and Noorbakhsh M.S., CurcuminIncorporated Crosslinked Sodium 
Alginate-g-Poly(N-isopropyl acrylamide) Thermo-Responsive Hydrogel as an In-Situ Forming Injectable Dressing for Wound Healing: In Vitro Characterization and In Vivo Evaluation, Carbohydr. Polym., 271, 118434, 2021.
13. Corrente F., Amara H.M.A., Pacelli S., Paolicelli P., and Casadei M.A., Novel Injectable and In Situ Cross-Linkable Hydrogels of Dextran Methacrylate and Scleroglucan Derivatives: Preparation and Characterization, Carbohydr. Polym., 92, 1033-1039, 2013.
14. Eke G., Mangir N., Hasirci N., MacNeil S., and Hasirci V., Development of a UV Crosslinked Biodegradable 
Hydrogel Containing Adipose Derived Stem Cells to Promote Vascularization for Skin Wounds and Tissue Engineering, 
Biomaterials,  129, 188-198, 2017.
15. Moradian A., Zandi M., Behzadnasab M., and Pezeshki-Modaress M., Synthesis Methods of In Situ Forming Injectable 
Hydrogels and their Applications in Tissue Engineering: A Review,  Iran. J. Polym. Sci. Technol.,  33, 95-113, 2020.
16. Pratt A.B., Weber F.E., Schmoekel H.G., Müller R., and Hubbell J.A., Synthetic Extracellular Matrices for In Situ 
Tissue Engineering,  Biotechnol. Bioeng.,  86, 27-36, 2004. 
17. Peng J., Zhao H., Tu C., Xu Z., Ye L., Zhao L. et al., In Situ Hydrogel Dressing Loaded with Heparin and Basic Fibroblast 
Growth Factor for Accelerating Wound Healing in Rat, Mater. Sci. Eng. C., 116, 111169, 2020.
18. Guo J., Sun W., Kim J.P., Lu X., Li Q., Lin M. et al., Development of Tannin-Inspired Antimicrobial Bioadhesives, Acta Biomater., 72, 35-44, 2018.
19. Maia J., Ferreira L., Carvalho R., Ramos M.A., and Gil M.H., Synthesis and Characterization of New Injectable and 
Degradable Dextran-Based Hydrogels,  Polymer,  46, 9604-9614, 2005.
20. Qu J., Zhao X., Liang Y., Zhang T., Ma P.X., and Guo B., Antibacterial Adhesive Injectable Hydrogels with Rapid Self-
Healing, Extensibility and Compressibility as Wound Dressing for Joints Skin Wound Healing,  Biomaterials,  183, 185-199, 2018.
21. Xuan H., Wu S., Fei S., Li B., Yang Y., and Yuan H., Injectable Nanofiber-Polysaccharide Self-Healing Hydrogels for Wound Healing, Mater. Sci. Eng. C, 128, 112264, 2021.
22 .Karami MH., Kalaee M.R., Khajavi R., Moradi O., and Zaarei D., Thermal Degradation Kinetics of Epoxy Resin Modified 
with Elastomeric Nanoparticles, Adv. Compos. Hybrid. Mater., 5, 390-401, 2022.
23. Karami M.H., Kalaee M.R., Mazinani S., Shakiba M., Shafiei Navid S., Abdouss M. et al., Curing Kinetics Modeling of 
Epoxy Modified by Fully Vulcanized Elastomer Nanoparticles Using Rheometry Method, Molecul., 27, 2870, 2022.
24. Karami M.H., Abdouss M., Kalaee M.R., and Moradi O., Application of Hydrogel Nanocomposites in Biotechnology: 
A Review Study,  Iran Polymer Technology, Research and Development, In Press, 2023.  
25. Le Thi P., Lee Y., Tran D.L., Thi T.T.H., Kang J.I., Park K.M.   et al., In Situ Forming and Reactive Oxygen Species-
Scavenging Gelatin Hydrogels for Enhancing Wound Healing Efficacy,  Acta Biomater.,  103, 142-152, 2020.
26. Lih E., Lee J.S., Park K., and Park K., Rapidly Curable Chitosan-PEG Hydrogels as Tissue Adhesives for Hemostasis 
and Wound Healing,  Acta Biomater.,  8, 3261-3269, 2012.
27. Sakai S. and Nakahata M., Horseradish Peroxidase Catalyzed Hydrogelation for Biomedical, Biopharmaceutical, and 
Biofabrication Applications, Chem. Asian J., 12, 3098-3109, 2017.
28. Jeon E.Y., Hwang B.H., Yang Y.J., Kim B.J., Choi B.-H., Jung G.Y. et al., Rapidly Light-Activated Surgical Protein Glue 
Inspired by Mussel Adhesion and Insect Structural Crosslinking, Biomaterials,  67, 11-19, 2015.
29. Liu C.,  Hua J., Ng P.F., and Fei B., Photochemistry of Bioinspired Dityrosine Crosslinking, J. Mater. Sci. Technol., 63, 
182-191, 2021.
30. Yu J., Huang T.R., Lim Z.H., Luo R., Pasula R.R., Liao L.D.et al., Production of Hollow Bacterial Cellulose Microspheres Using Microfluidics to Form an Injectable Porous Scaffold for Wound Healing, Adv. Healthc. Mater., 5, 2983-2992, 2016.
31. Joseph S.M., Krishnamoorthy S., Paranthaman R., Moses J.A., and Anandharamakrishnan C.A., Review on  Source-Specific Chemistry, Functionality, and Applications of Chitin and Chitosan, Carbohydr. Polym. Technol. Appl., 2, 100036, 2021.
32. Issera W.M.J.C., Rathnayake S.I., Abeyrathne E.D.N.S., and Nam K.C., An Improved Extraction and Purification Method 
for Obtaining High-Quality Chitin and Chitosan from Blue Swimmer (Portunus Pelagicus) Crab Shell Waste, Food Sci. 
Biotechnol.,  30, 1645-1655, 2021.
33. MachaƂowski T., Wysokowski M., Tsurkan M.V., Galli R., Schimpf C., Rafaja D. et al., Spider Chitin: An Ultrafast 
Microwave-Assisted Method for Chitin Isolation from Caribena Versicolor Spider Molt Cuticle, Molecules, 24, 3736, 
2019.
34. Ahmad S.I., Ahmad R., Shoeb Khan M., Kant R., Shahid S., Gautam L. et al., Chitin and Its Derivatives: Structural Properties and Biomedical Applications, Int. J. Biol. Macromol, 164, 526-539, 2020.
35. Dave U., Somanader E., Baharlouei P., Pham L., and Rahman M.A., Applications of Chitin in Medical, Environmental, and Agricultural Industries, J. Mar. Sci. Eng., 9, 1173, 2021.