An Introduction to the Structure and Performance of Polymer Electrolyte Membranes and their Applications

Document Type : compile

Authors

1 Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran

2 Department of Chemical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

3 Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

Abstract

In recent years, research on polymer electrolytes (PEs) has been developed, because these materials can be considered as a suitable alternative to liquid electrolytes in various applications. Using polymer electrolytes solve the problems of solvent leakage, dendrite growth (lithium dendrite in lithium ion batteries), internal short circuit, use of corrosive solvent and production of harmful gases. During the last three decades, the introduction of polymer electrolyte membranes has led to significant progress in expanding and improving the performance of electrochemical devices such as batteries, fuel cells, supercapacitors, sensors, solar cells, etc. In general, PEs are ion-doped structures that have the ability to transfer and exchange ions via ion conducting sites. In various applications, polymer electrolyte membranes should provide properties, such as flexibility and proper filmability, high safety, suitable ionic conductivity for practical applications, low electrical conductivity, good mechanical strength, and thermal and electrochemical stability. In this article, in order to develop a sufficient knowledge of polymer electrolyte membranes, their specific chemical structure, ion transport mechanisms, methods of improving properties, as well as the applications of polymer electrolytes (such as fuel cells, batteries, capacitors, etc.) has been reviewed

Key words: Polymer electrolyts, Ionic conductivity, Lithium batteries, Fuel cells, Supercapacitor

Keywords

Main Subjects


1.  Cheng X., Pan J., Zhao Y., Liao M., and Peng H., Gel Polymer Electrolytes for Electrochemical Energy Storage, Adv. Funct. Mater., 8, 1-16, 2017.
2.  Winie T., Arof A.K., and Thomas S., Polymer Electrolytes: Characterization Techniques and Energy Applications, John 
Wiley and Sons, 80-90, 2019.
3.  Fang J., Qiao J., Wilkinson D.P., and Zhang J., Electrochemi-cal Polymer Electrolyte Membranes, CRC, 39-42, 2015.
4.  Arya A. and Sharma A., Polymer Electrolytes for Lithium Ion Batteries: A Critical Study, Ionics, 23, 497-540, 2017.
5.  Jamalpour S., Ghahramani M., Ghaffarian S.R., and Javan-bakht M., The Effect of Poly(hydroxyl ethyl methacrylate) on 
The Performance of PVDF/P(MMA-co-HEMA) Hybrid Gel   Polymer Electrolytes for Lithium Ion Battery Application, 
Polymer, 195, 1-12, 2020.
6.  Jamalpour S., Ghahramani M., Ghaffarian S.R. and Javan-bakht M., Improved Performance of Lithium Ion Battery by 
the Incorporation of Novel Synthesized Organic-Inorganic Hybrid Nanoparticles SiO2-Poly(methyl methacrylate-co-
ureidopyrimidinone) in Gel Polymer Electrolyte Based on Poly(vinylidene fluoride), Polymer, 228, 1-10, 2021.
7.  Johan M.R., Shy O.H., Ibrahim S., Yassin S.M., and Hui T.Y., Effects of Al2O3 Nanofiller and EC Plasticizer on the Ionic 
Conductivity Enhancement of Solid PEO–LiCF3SO3 Solid Polymer Electrolyte, Solid State Ion., 196, 41-47, 2011.
8.  Hoang Huy V.P., So S., and Hur J., Inorganic Fillers in Composite   Gel Polymer Electrolytes for High-Performance Lithium and Non-lithium Polymer Batteries, J. Nanomater., 11, 614, 2021.
9.  Tohidian M., Ghaffarian S.R., Nouri M., Jaafarnia, E., and Haghighi A.H., Polyelectrolyte Nanocomposite Membranes 
Using Imidazole-Functionalized Nanosilica for Fuel Cell   Applications, J. Macromol. Sci. Phys., 54, 17-31, 2015.
10. Lu W., Yuan Z., Zhao Y., Zhang H., Zhang H., and Li X.,   Porous Membranes in Secondary Battery Technologies, Chem. 
Soc. Rev., 46, 2199-2236, 2017.
11. Tan X. and Rodrigue D., A Review on Porous Polymeric Mem-brane Preparation. Part I: Production Techniques with Polysul-fone and Poly(vinylidene fluoride), Polymers, 11, 1160, 2019. 
12. Zeinali R., Del Valle L.J., Torras J., and Puiggalí J., Recent Progress on Biodegradable Tissue Engineering Scaffolds   
Prepared by Thermally-Induced Phase Separation (Tips), Int. J. Mol. Sci., 22, 3504, 2021. 
13. Cui Z.Y., Xu Y.Y., Zhu L.P., Wang J.Y., Xi Z.Y., and Zhu B.K., Preparation of PVDF/PEO-PPO-PEO Blend Microporous 
Membranes for Lithium Ion Batteries Via Thermally Induced Phase Separation Process, J. Membr. Sci., 325, 957-963, 2008. 
14. Ismail N., Venault A., Mikkola J.P., Bouyer D., Drioli E., and Kiadeh N.T., Investigating the Potential of Membranes 
Formed by the Vapor Induced Phase Separation Process, J. Membr. Sci., 597, 117601, 2020. 
15. Chen Y., Li Z., Liu X., Zeng D., Zhang Y., Sun Y. et al.,   Construction of Interconnected Micropores in Poly(arylene 
ether) Based Single Ion Conducting Blend Polymer Membranes   Via Vapor-Induced Phase Separation, J. Membr. Sci., 544, 47-57, 2017.
16. Gan H., Li S., Zhang Y., Wang J., and Xue Z., Electrospun Composite Polymer Electrolyte Membrane Enabled with Sil-
ica-Coated Silver Nanowires, Eur. J. Inorg. Chem., 45, 4639-4646, 2021.
17. Elwan H.A., Mamlouk M., and Scott K., A Review of   Proton Exchange Membranes Based on Protic Ionic Liquid/
Polymer Blends for Polymer Electrolyte Membrane Fuel Cells, J.   Power Sources, 484, 229197, 2021.
18. Nasirinezhad M., Ghaffarian S.R., and Tohidian M., Eco-Friendly Polyelectrolyte Nanocomposite Membranes Based 
on Chitosan and Sulfonated Chitin Nanowhiskers for Fuel Cell Applications, Iran. Polym. J., 30, 355-67, 2021.
19. Rajendran S., Prabhu M.R., and Rani M.U., Characteriza-tion of PVC/PEMA Based Polymer Blend Electrolytes, Int. J. 
Electrochem., 3, 282-290, 2008.
20. Liu B., Huang Y., Zhao L., Huang Y., Song A., Lin Y. et al., A Novel Non-woven Fabric Supported Gel Polymer Electrolyte Based on Poly(methylmethacrylate-polyhedral oligomeric silsesquioxane) by Phase Inversion Method for Lithium Ion 
Batteries, J. Membr. Sci., 564, 62-72, 2018. 
21. Lehmann M.L., Yang G., Nanda J., and Saito T., Well- Designed Crosslinked Polymer Electrolyte Enables High Ion-
ic Conductivity and Enhanced Salt Solvation, J. Electrochem. Soc., 167, 70539, 2020. 
22. Li C., Huang Y., Feng X., Zhang Z., Gao H., and Huang J., Silica-Assisted Cross-Linked Polymer Electrolyte Membrane 
with High Electrochemical Stability for Lithium-Ion Batteries,J. Colloid Interface Sci., 594, 1-8, 2021.
23.   Tohidian M. and Ghaffarian S.R., Polyelectrolyte   Nanocompos-ite Membranes Based on Chitosan and Surface Modified Multi-Walled Carbon Nanotubes for Use in Fuel Cell Applications,  J. Macromol. Sci., 58, 778-91, 2021.
24. Nasirinezhad M., Ghaffarian S.R., and Tohidian M., Nano-composite Membranes Based on Imidazole-Functionalized 
Chitin Nanowhiskers for Direct Methanol Fuel Cell Applica-tions, J. Macromol. Sci., 60, 663-685, 2021. 
25. Tohidian M. and Ghaffarian S.R., Surface Modified Multi-walled Carbon Nanotubes and Nafion Nanocomposite   
Membranes for Use in Fuel Cell Applications,  Polym. Adv. Technol., 29, 1219-1226, 2018.
26. Taghavi S., Mohammadi F., and Barzin J., Ionic Polymer-Metal Composites (IPMC) from Recycled Flemion Membrane 
Used in Chlor-Alkali Industry, Sci. Iran., 23, 1117-1127, 2016.
27. Alipoori S., Mazinani S., Aboutalebi S.H., and Sharif F.,   Review of PVA-Based Gel Polymer Electrolytes in Flexible 
Solid-State Supercapacitors: Opportunities and Shallenges, J. Energy Storage, 27, 101072, 2020.