1. Kumar P., Rajak D.K., Abubakar M., Ali S.G.M., and Hussain M., 3D Printing Technology for Biomedical Practice: A
Review, J. Mater. Eng. Perform., 30, 5342-5355, 2021.
2. Korium M. and Heikki H., Development of a Metal 3D Printing Process for Jewelry Production Utilizing Titanium,
MSc Thesis, Finland, LUT University, June 2019.
3. Han X., Yang D., Yang C., Spintzyk S., Scheideler L., Li P., and Rupp F., Carbon Fiber Reinforced PEEK Composites
Based on 3D-Printing Technology for Orthopedic and Dental Applications, J. Clin. Med., 8, 240, 2019.
4. Jagadiswaran B., Alagarasan V., Palanivelu P., Theagarajan R., Moses J.A., and Anandharamakrishnan C., Valorization
of Food Industry Waste and By-Products Using 3D Printing: A Study on the Development of Value-Added Functional
Cookies, Future Food., 4, 100036, 2021.
5. Kotta S., Nai A., and Alsabeelah N., 3D Printing Technology in Drug Delivery :Recent Progress and Application, Curr. Pharm. Des., 24, 5039-5048, 2018.
6. Zamborsky R., Kilian M., Jacko P., Bernadic M., and Hudak R., Perspectives of 3D Printing Technology in Orthopaedic
Surgery, Bratisl. Lek. Listy, 120, 498-504, 2019 .
7. Pavan Kalyan B.G. and Kumar L., 3D Printing: Applications in Tissue Engineering, Medical Devices, and Drug Delivery,
AAPS PharmSciTech, 23, 1-20, 2022.
8. Layani M., Wang X., and Magdassi S., Novel Materials for 3D Printing by Photopolymerization, J. Adv. Mater., 30, 1706344, 2018 .
9. Fu J., Yin H., Yu X., Xie C., Jiang H., Jin Y. et al., Combination of 3D Printing Technologies and Compressed Tablets for
Preparation of Riboflavin Floating Tablet-in-Device (TiD) Systems, Int. J. Pharm., 549, 370-379, 2018.
10. Mondschein R.J., Kanitkar A., Williams C.B., Verbridge S.S., and Long T.E., Polymer Structure-Property Requirements for Stereolithographic 3D Printing of Soft Tissue Engineering Scaffolds, Biomaterials, 140, 170-188, 2017.
11. Mao Y., Yu K., Isakov M.S., Wu J., Dunn M.L., and Jerry Q.-H., Sequential Self-Folding Structures by 3D Printed Digital
Shape Memory Polymers, Sci. Rep., 5, 1-12, 2015.
12. Ligon S.C., Liska R., Stampfl J., Gurr M., and Mülhaupt R., Polymers for 3D Printing and Customized Additive
Manufacturing, Chem. Rev., 117, 10212-10290, 2017.
13. Zirak N., Shirinbayan M., Benfriha K., Deligant M., and Tcharkhtchi A., Stereolithography of (Meth)Acrylate‐based
Photocurable Resin: Thermal and Mechanical Properties, J. Appl. Polym. Sci., 139, 52248, 2022.
14. Pala N.B., Mangadlao J.D., de Leon A.C.C., Palaganas J.O., Pangilinan K.D., Lee Y.J. et al., 3D Printing of Photocurable
Cellulose Nanocrystal Composite for Fabrication of Complex Architectures via Stereolithography, ACS Appl. Mater.
Interfaces, 9, 34314-34324, 2017.
15. Murphy E.J., Ansel R.E., and Krajewski J.J, Method of Forming a Three-Dimensional Object by Stereolithography and
Composition Therefore, US Pat. 4,942,001, 1990.
16. Hull C.W., Spence S.T., Lewis C.W., Vinson W., Freed R.S., and Smalley D.R., Stereolithographic Curl reduction, US Pat.
5,772,947, 1998.
17. Ueda, M., Takase K., and Kurosawa T., Stereolithography Resin Compositions and Three-Dimensional Objects Made
Therefrom, US Pat. 12/531,948, 2010.
18. Steinmann B., Wolf J.P., Schulthess A., and Hunziker M., Photosensitive Compositions, US Pat. 5,476,748, 1995.
19. Kim L.U., Kim J.W., and Kim C.K., Effects of Molecular Structure of the Resins on the Volumetric Shrinkage and
the Mechanical Strength of Dental Restorative Composites, Biomacromolecules, 7, 2680-2687, 2006.
20. McNair O.D., Janisse A.P., Krzeminski D.E., Brent D.E., Gould T.E., Rawlins J.W. et al., Impact Properties of Thiol-
Ene Networks, ACS Appl. Mater. Interfaces, 5, 11004-11013, 2013.
21. Qin X.H., Gruber P., Markovic M., Plochberger B., Klotzsch E., Stampfl J. et al., Enzymatic Synthesis of Hyaluronic Acid Vinyl Esters for Two-Photon MicroFabrication of Biocompatible
and Biodegradable Hydrogel Constructs, Polym. Chem., 5, 6523-6533, 2014.
22. Senyurt A.F., Wei H., Phillips B., Cole M., Nazarenko S., Hoyle C.E. et al., Physical and Mechanical Properties of
Photopolymerized Thiol−Ene/Acrylates, Macromolecules, 39, 6315-6317, 2006.
23. Ligon S.C., Husar B., Wutzel H., Holman R., and Liska R., Strategies to Reduce Oxygen Inhibition in Photoinduced
Polymerization, Chem. Rev., 114, 557-589, 2013.
24. Dias A.J.A.A., Houben E.J.E., Steeman P.A.M., and Wei H., Radiation Curable ThiolEne Composition, Eur. Pat. 1477511A1, 2004.
25. Patel R., Rhodes M., and Zhao Y., Photocurable Compositions, US Pat. 8,097,399, 2012.
26. Ahmed K., Naga N., Kawakami M., and Furukawa H., Extremely Soft, Conductive, and Transparent Ionic Gels by
3D Optical Printing, Macromol. Chem. Phys, 1800216, 2018.
27. Joshi M.P., Pudavar H.E., Swiatkiewicz J., Prasad P.N., and Reianhardt B.A., Three-Dimensional Optical Circuitry Using
Two-Photon-Assisted Polymerization, Appl. Phys. Lett., 74, 170-172, 1999.
28. Zhang J. and Xiao P., 3D Printing of Photopolymers, Polym. Chem., 9, 1530-1540, 2018.
29. Berglund G.D. and Tkaczyk T.S., Enabling Consumer-Grade 3D-Printed Optical Instruments-A Case Study on Design and Fabrication of a Spectrometer System Using Low-Cost 3D Printing Technologies, Opt. Contin., 1, 516-526, 2022.
30. Park H.Y., Kloxin C.J., Scott T.F., and Bowman C.N., Stress Relaxation by Addition-Fragmentation Chain Transfer in
Highly Cross-Linked Thiol-yne Networks, Macromolecules, 43, 10188-10190, 2010.
31. Crivello J.V., The Discovery and Development of Onium Salt Cationic Photoinitiators, J. Polym. Sci. Part A: Polym. Chem., 37, 4241-4254, 1999.
32. Crivello J.V. and Dietliker K., Photoinitiators for Free Radical Cationic and Anionic Photopolymerisation, John Wiley and Sons, Chichester, 1998.
33. Lapin S.C., Snyder J.R., Sitzmann E.V., Barnes D.K., and Green G.D., Stereolithography Using Vinyl Ether-Epoxide Polymers, US Pat. 5,437,964, 1995.
34. Al Mousawi A., Dumur F., Garra P., Toufaily J., Hamieh T., Goubard F. et al., Azahelicenes as Visible Light Photoinitiators for Cationic and Radical Polymerization: Preparation of Photoluminescent Polymers and Use in High Performance
LED Projector 3D Printing Resins, J. Polym. Sci. Part A: Polym. Chem., 55, 1189-1199, 2017.
35. Crivello J.V. and Varlemann U., Photopolymerization: Fundamentals and Applications, Scranton A.B., Bowman C.N.,
and Pheiffer R.W. (Eds.), ACS Symposium Series, 82-94, 1997.
36. Steinmann B. and Schulthess A., Liquid, Radiation-Curable Composition, Especially for Stereolithography, US Pat.
5,972,563, 1999.
37. Lapim S.C., Snyder J.R., Sitzmann E.V, Barnes D.K., and Green G.D., Stereolithography Using Vinyl Ether-Epoxide
Polymers, US Pat. 5437964, 1995.
38. Lapin S.C. and Brautigam R.J., Stereolithography Using Vinyl Ether Based Polymers, US Pat. 5,506,087, 1996.
39. Yamamura T., Watanabe T., Takeuchi A., and Ukachi T., Photo-Curable Resin Composition Used for Photo-Fabrication
of Three-Dimensional Object, US Pat. 5,981,616, 1999.
40. Putzien S., Louis E., Nuyken O., Crivello J.V., and Kühn F.E., UV Curing of Epoxy Functional Hybrid Silicones, J. Appl.
Polym. Sci., 126, 1188-1197, 2012.
41. Zhao T., Yu R., Li X., Zhang Y., Yang X., Zhao X. et al., A Comparative Study on 3D Printed Silicone-Epoxy/Acrylate
Hybrid Polymers via Pure Photopolymerization and Dual-Curing Mechanisms, J. Appl. Polym. Sci., 54, 5101-5111, 2019.
42. Gupta A. and Ogale A.A., Dual Curing of Carbon Fiber Reinforced Photoresins for Rapid Prototyping, Polym.
Compos., 23, 1162-1170, 2002.