UV, UV-Vis and NIR Photoinitiators in Light-Based 3D Printing Processes

Document Type : compile

Authors

1 Polymer Chemistry Research Laboratory, Department of Chemistry, University of Zanjan, Zanjan, 45195‐313, Islamic Republic of Iran

2 PhD candidate/ University of Isfahan

Abstract

light-based three dimensional (3D) printing processes which are based on the use of light-sensitive monomers or oligomers, are the most versatile and interesting technique due to the unique potential to design structures with complex geometry, the ease of the process, the availability of the required compounds as well as the feasibility of tailoring materials to achieve the required properties. In this approach, photoinitiators are considered the key elements in the success of this process, and several types of research have been performed to introduce initiators with enhanced efficiencies. This article reviews the types of photoinitiators used in 3D printing technology and highlights the research carried out to transfer the absorption region of the compounds from the ultraviolet region to the visible region. In addition, water-soluble photoinitiators are also of great interest for use in the bioprinting of hydrogel systems, which are reviewed in this article. Obviously, success in the development of the 3D printing process and fabrication of constructs with suitable mechanical properties as well as resolution requires familiarity with the key elements involved in the process, therefore, one of the most important factors is investigated

Keywords

Main Subjects


1.  Pavan Kalyan B.G. and Kumar L., 3D Printing: Applications in Tissue Engineering, Medical  Devices,  and Drug Delivery, 
AAPS  PharmSciTech,  23, 1-20, 2022.
2.  Mondschein R.J., Kanitkar A., Williams C.B., Verbridge S.S., and Long T.E., Polymer Structure-Property Requirements for 
Stereolithographic 3D Printing  of  Soft  Tissue  Engineering Scaffolds,  Biomaterials,  140, 170-188, 2017.
3.  Pagac M., Hajnys J., Ma Q.P., Jancar L., Jansa J., Stefek P. et al., A Review of Vat Photopolymerization Technology: 
Materials, Applications, Challenges, and Future Trends of 3D Printing,  Polymers,  13, 598, 2021.
4.  Tzeng J.J., Yang T.S., Lee W.F., Chen H., and Chang H.M., Mechanical Properties and Biocompatibility of Urethane 
Acrylate-Based 3D-Printed Denture Base Resin,  Polymers, 13, 822, 2021  .
5.  Yu R., Yang X., Zhang Y., Zhao X., Wu X., Zhao T. et al., Three-Dimensional Printing of Shape Memory Composites 
with Epoxy-Acrylate Hybrid Photopolymer, ACS Appl. Mater., 9, 1820-1829, 2017.
6.  Baheti P., Bonneaud C., Bouilhac C., Joly-Duhamel C., Howdle S., and Lacroix-Desmazes P., Novel Green Route 
Towards Polyesters-Based Resin by Photopolymerization of Star Polymers, EXPRESS Polym. Lett., 13, 1104-1115, 2019.
7.  Park H.Y., Yeo J.G., Choi J., Choe G.B., Kim G.N., Koh Y.H. et al., Ceramic Green and Fired Body with a Uniform 
Microstructure Prepared Using Living Characteristics of Photo-Curable Cycloaliphatic Epoxide: Applicability of 
Cycloaliphatic Epoxide in Photo-Polymerization-Based 3D Printing, J. Eur. Ceram. Soc.,  42, 589-599, 2022.
8.  Stansbury J.W. and Idacavage M.J., 3D Printing with Polymers: Challenges Among Expanding Options and 
Opportunities,  Dent. Mater. J.,  32, 54-64, 2016.
9.  Ge L., Dong L., Wang D., Ge Q., and Gu G., A Digital Light Processing 3D Printer for Fast and High-Precision Fabrication 
of Soft Pneumatic Actuators,  Sensor. Actuat. A Phys.,  273, 285-292, 2018.
10. Tumbleston J.R., Shirvanyants D., Ermoshkin N., Janusziewicz R., Johnson A.R., Kelly D. et al., Continuous Liquid Interface Production of 3D Objects, Science, 347, 1349-1352, 2015.
11.  Ito T., Hagiwara T., Ozai T., and Miyao T., Rapid Prototyping Resin Compositions, US Pat. 8293810B2, 2005.
12. Collins G.L. and Costanza J.R., Reactions of UV Curable Resin Formulations and Neat Multifunctional Acrylates. 
II. Photoinitiated Polymerization of Neat 1, 6-Hexanediol Diacrylate,  J. Coat. Technol.,  51, 57-63, 1979.
13. Schafer K.J., Hales J.M., Balu M., Belfield K.D., Van Stryland E.W., and Hagan D.J., Two-Photon Absorption Cross-Sections of Common Photoinitiators, J. Photochem. Photobiol. Part A: Chem., 162, 497-502, 2004.
14. Chiappone A., Fantino E., Roppolo I., Lorusso M., Manfredi D., Fino P. et al., 3D Printed PEG-Based Hybrid Nanocomposites Obtained by Sol–Gel Technique, ACS Appl. Mater. Interfaces, 8, 5627-5633, 2016.
15. Bagheri A. and Jin J., Photopolymerization in 3D Printing, ACS Appl. Mater. Interfaces,  1, 593-611, 2019.
16. Park H.K., Shin M., Kim B., Park J.W., and Lee H., A Visible Light-Curable Yet Visible Wavelength-Transparent Resin for 
Stereolithography 3D Printing, NPG Asia Mater., 10, 82-89, 2018.
17. Xiao P., Dumur F., Graff B., Gigmes D., Fouassier J.P., and Lalevée J., Blue Light Sensitive Dyes for Various Photopolymerization Reactions: Naphthalimide and Naphthalic Anhydride Derivatives, Macromolecules,  47, 601-608, 2014.
18. Jauk S. and Liska R., Photoinitiators with Functional Groups, Macromol. Rapid Commun., 26, 1687-1692, 2005.
19. Zhang J., Dumur F., Xiao P., Graff B., Bardelang D., Gigmes D. et al., Structure Design of Naphthalimide Derivatives: Toward Versatile Photoinitiators for Near-UV/visible LEDs, 3D Printing, and Water-Soluble Photoinitiating Systems, Macromolecules, 48, 2054-2063, 2015.
20. Al Mousawi A., Kermagoret A., Versace D.L., Toufaily J., Hamieh T., Graff B. et al., Copper Photoredox Catalysts for 
Polymerization  Upon  Near  UV or  Visible  Light: Structure/Reactivity/Efficiency Relationships and Use in LED Projector 
3D Printing  Resins, Polym. Chem.,  8, 568-580, 2017.
21. Al Mousawi A., Poriel C., Dumu F., Toufaily J., Hamieh T., Fouassier J.P. et al., Zinc Tetraphenylporphyrin as 
High Performance Visible Light Photoinitiator of Cationic Photosensitive Resins for LED Projector 3D Printing 
Applications, Macromolecules, 50, 746-753, 2017.
22. Al Mousawi A., Garra P., Sallenave X., Dumur F., Toufaily J., Hamieh T. et al., π-Conjugated Dithienophosphole Derivatives as High Performance  Photoinitiators  for 3D Printing Resins, Macromolecules, 51, 1811-1821, 2018.
23. Al Mousawi A., Garra P., Schmitt M., Toufaily J., Hamieh T., Graff B. et al., 3-Hydroxyflavone and N-Phenylglycine in 
High Performance  Photoinitiating  Systems  for 3D Printing and  Photocomposites  Synthesis, Macromolecules,  51, 4633-4641, 2018.
24. Lin H., Zhang D., Alexander P.G., Yang G., Tan J., Cheng A.W.M. et al., Application of Visible Light-Based Projection 
Stereolithography for Live Cell-Scaffold  Fabrication  with Designed  Architecture,  Biomaterials,  34, 331-339, 2013.
25. Mayer M.G., Elementarakte U., Mit Zwei Quantensprungen, Ann. Phys., 401, 273-294, 1931.
26. Chen Z., Wang X., Li S., Liu S., Miao H., and Wu S., Near‐Infrared Light Driven Photopolymerization Based on Photon 
Upconversion,  ChemPhotoChem,  3,  1077-1083,  2019.
27. Méndez-Ramos J., Ruiz-Morales J.C., Acosta-Mora P., and Khaidukov N.M., Infrared-Light Induced Curing of 
Photosensitive Resins Through Photon Up-Conversion for Novel Cost-Effective Luminescent 3D-Printing Technology, J. 
Mater. Chem. C, 4, 801-806, 2016.
28. Rocheva V.V., Koroleva A.V., Savelyev A.G., Khaydukov K.V., Generalova A.N., Nechaev A.V. et al., High-Resolution 3D 
Photopolymerization Assisted by Upconversion Nanoparticles for Rapid Prototyping Applications, Sci. Rep., 8, 1-10, 2018.
29. Panzer M. and Tumbleston J.R., Continuous Liquid Interface Production with Upconversion Photopolymerization, US Pat. 20180126630 A1, 2018.
30. Chan V., Zorlutuna P., Jeong J.H., Kong H., and Bashir R., Three-Dimensional Photopatterning of Hydrogels Using 
Stereolithography for Long-Term Cell Encapsulation,  Lab Chip,  10, 2062-2070, 2010.
31. Occhetta P., Visone R., Russo L., Cipolla L., Moretti M., and Rasponi M., VA-086 Methacrylate Gelatine Photopolymerizable Hydrogels: A Parametric Study for Highly Biocompatible 3D Cell Embedding, J. Biomed. Mater. Res. A, 103, 2109-2117, 2015.
32. Pawar A.A., Halivni S., Waiskopf N., Ben-Shahar Y., Soreni-Harari M., Bergbreiter S. et al., Rapid Three-Dimensional Printing in Water Using Semiconductor–Metal Hybrid Nanoparticles as Photoinitiators, Nano Lett., 17, 4497-4501, 2017.
33. Chen H., Vahdati M., Xiao P., Dumur F., and Lalevée J., Water-Soluble Visible Light Sensitive Photoinitiating System Based on Charge Transfer Complexes for the 3D Printing of Hydrogels, Polymers, 13, 3195, 2021.
34. Li J., Zhang X., Nie J., and Zhu X., Visible Light and Water-Soluble Photoinitiating System Based on the Charge Transfer Complex for Free Radical Photopolymerization, J. Photochem. Photobiol. A: Chem., 402, 112803, 2020.