Application of Dendrimers as Drug Carriers Support

Document Type : compile

Authors

1 Faculty of Shiraz University

2 Department of Chemistry, College of Science, Shiraz University, Shiraz, Iran

3 Department of Chemistry, Kashan University

Abstract

In recent years, dendrimers as a new class of polymeric materials have attracted lots of attention due to their unique properties, especially as drug delivery systems. In this process, dendrimers can deliver medicine directly to the affected part of the patient's body. Dendrimers can be defined as macromolecular structures with several advantages, which may undergo changes depending on the chemical nature of the drug to be delivered. Dendrimers can be defined as macromolecular structures with several advantages that depending on the chemical nature of the drug to be delivered, they may change. The reason for the high attention paid to dendrimers in drug delivery is that they have properties such as uniform size, water solubility, modifiable surface performance, high degree of branching, being multivalent, well-defined molecular weight, and available internal cavities. In addition, the high level of control over dendritic architecture distinguishes them as ideal carriers. Also, the use of dendrimers in biomedicine has attracted the attention of many scientists. Biomedicine is one of the main fields of study of dendrimers due to their capacity to improve solubility, uptake, bioavailability and targeted distribution, and their value in diagnosis and treatment. In the last decade, anti-neoplastic research on dendrimers has been widely developed and several types of poly amidoamine (PAMAM) and poly propylene imine (PPI) dendrimer complexes with doxorubicin, paclitaxel, cisplatin, melphalan, and methotrexate have been improved compared to the drug molecule alone.

Keywords


1. Nanjwade B.K., Bechra H.M., Derkar G.K., Manvi F.V., and 
Nanjwade V.K., Dendrimers: Emerging Polymers for Drug-
Delivery Systems, Eur. J. Pharm. Sci., 38, 185-196, 2009.
2. Ghasemi S. and Ghezelsofloo M., Application of Polyurethane 
in Drug Delivery System (Persian), Polymerization, 11, 31-38, 
2022. 
3. Nikzamir M., Hanifehpour Y., Akbarzadeh A., and Panahi 
Y., Applications of Dendrimers in Nanomedicine and Drug 
 Delivery: A Review, J. Inorg. Organomet. Polym. Mater., 31, 
2246-2261, 2021.
4. Garg T., Singh O., Arora S., and Murthy R., Dendrimer-  A   
Novel  Scaffold  for  Drug  Delivery,  Int. J. Pharm. Sci. Rev. 
Res.,  7, 211-220, 2011.
5. Mignani S., El Kazzouli S., Bousmina M., and Majoral J.P., 
Expand Classical Drug Administration Ways by Emerging 
Routes Using Dendrimer Drug Delivery Systems: A Concise 
Overview, Adv. Drug Deliv. Rev.,  65, 1316-1330, 2013.
6. Cheng Y., Xu Z., Ma M., and Xu T., Dendrimers as Drug Carri-
ers: Applications in Different Routes of Drug Administration, 
J. Pharm. Sci., 97, 123-143, 2008.
7. Gebbia V. and Puozzo C., Oral Versus Intravenous Vinorelbine: 
Clinical Safety Profile, Expert Opin. Drug. saf., 4, 915-928, 2005.
8. Caminade AM. and Turrin C.O., Dendrimers for Drug Delivery, 
J. Mater. Chem. B, 2, 4055-4066, 2014.
9. Markman M., Intraperitoneal Antineoplastic Drug Delivery: 
Rationale and Results,  Lancet Oncol.,  4, 277-283, 2003.
10. Roberts J.C., Bhalgat M.K., and Zera R.T., Preliminary Bio
logical Evaluation of Polyamidoamine (PAMAM) Starburst 
Dendrimers, J. Biomed. Mater. Res., 30, 53-65, 1996.
11. Malik N., Evagorou E.G., and Duncan R., Dendrimer-Plati
nate: A Novel Approach to Cancer Chemotherapy, Anti-Can
cer Drug., 10, 767-776, 1999.
12. Chen H.T., Neerman M.F., Parrish A.R., and Simanek E.E.,
Cytotoxicity, Hemolysis, and Acute In Vivo Toxicity of Den
drimers Based on Melamine, Candidate Vehicles for Drug 
Delivery, J. Am. Chem. Soc., 126, 10044-10048, 2004.
13. Padilla De Jesús O.L., Ihre H.R., Gagne L., Fréchet J.M., and
Szoka F.C., Polyester Dendritic Systems for Drug Delivery 
Applications: In Vitro and In Vivo Evaluation, Bioconjugat
Chem., 13, 453-461, 2002.
14. Kukowska-Latallo J.F., Candido K.A., Cao Z., Nigavekar S.S.
Majoros I.J., Thomas T.P. et al., Nanoparticle Targeting of 
Anticancer Drug Improves Therapeutic Response in Animal 
Model of Human Epithelial Cancer, Cancer Res., 65, 5317
5324, 2005.
15. Malik N., Wiwattanapatapee R., Klopsch R., Lorenz K., Frey
H., Weener J.W. et al., Dendrimers: Relationship Between Structure and Biocompatibility in Vitro, and Preliminary Stud-
ies on the Biodistribution of 125I-labelled Polyamidoamine 
Dendrimers In Vivo, J. Control. Release, 65, 133-148, 2000.
16. Wilbur D.S., Pathare P.M., Hamlin D.K., Buhler K.R., and 
Vessella R.L., Biotin Reagents for Antibody Pretargeting. 3. 
Synthesis, Radioiodination, and Evaluation of Biotinylated 
Starburst Dendrimers, Bioconjugate Chem., 9, 813-825, 1998.
17. Moreno-Sastre M., Pastor M., Salomon C.J., Esquisabel A., 
and Pedraz J.L., Pulmonary Drug Delivery: A Review on 
Nanocarriers for Antibacterial Chemotherapy, J. Antimicrob. 
Chemother.,  70, 2945-2955, 2015.
18. Bai S., Thomas C., and Ahsan F., Dendrimers as a Carrier for 
Pulmonary Delivery of Enoxaparin, A Low-Molecular Weight 
Heparin, J. Pharm. Sci., 96, 2090-2106, 2007.
19. Nasr M., Najlah M., D’Emanuele A., and Elhissi A., PAMAM 
Dendrimers as Aerosol Drug Nanocarriers for Pulmonary   
Deliveryvia Nebulization, Int. J. Pharm., 461, 242-250, 2014.
20. Kojima C., Kono K., Maruyama K., and Takagishi T., Syn-
thesis of Polyamidoamine Dendrimers Having Poly(ethylene   
glycol) Grafts and their Ability to Encapsulate Anticancer 
Drugs,  Bioconjugate Chem.,  11, 910-917, 2000.
21. Najlah M., Freeman S., Attwood D., and D’Emanuele A., Syn-
thesis, Characterization and Stability of Dendrimer Prodrugs, 
Int. J. Pharm., 308, 175-182, 2006.
22. Sakthivel T., Toth I., and Florence A.T., Distribution of a Li-
pidic 2.5 nm Diameter Dendrimer Carrier After Oral Adminis-
tration,  Int. J. Pharm., 183, 51-55, 1999.
23. Singh A.K., Sharma A.K., Kha I., Gothwal A., Gupta L., and 
Gupta U., Oral Drug Delivery Potential of Dendrimers, in Nano-
structures for Oral Medicine, Elsevier Science, 231-261, 2017.
24. Ramachandran C. and Fleisher D., Transdermal Delivery of 
Drugs for the Treatment of Bone Diseases, Adv. Drug Deliv. 
Rev., 42, 197-223, 2000.
25. Thomas B.J. and Finnin B.C., The Transdermal Revolution, 
Drug Discov., 9, 697-703, 2004.
26. Sun M., Fan A., Wang Z., and Zhao Y., Dendrimer-Mediated 
Drug Delivery to the Skin, Soft Matter, 8, 4301-4305, 2012.
27. Wang Z., Itoh Y., Hosaka Y., Kobayashi I., Nakano Y., Maeda 
I. et al., Novel Transdermal Drug Delivery System with Poly-
hydroxyalkanoate and Starburst Polyamidoamine Dendrimer, 
J. Biosci. Bioeng., 95, 541-543, 2003.
28. Wang Z., Itoh Y., Hosaka Y., Kobayashi I., Nakano Y., Maeda 
I. et al., Mechanism of Enhancement Effect of Dendrimer on 
Transdermal Drug Permeation through Polyhydroxyalkanoate 
Matrix, J. Biosci. Bioeng., 96, 537-540, 2003.
29. Geroski D.H. and Edelhauser H.F., Transscleral Drug Delivery 
for Posterior Segment Disease, Adv. Drug Deliv. Rev., 52, 37-
48, 2001.
30. Souto E.B., Dias-Ferreira J., López-Machado A., Ettcheto M., 
Cano A., Camins Espuny A. et al., Advanced Formulation   
Approaches for Ocular Drug Delivery: State-of-the-Art and 
Recent Patents, Pharmaceutics,  11, 460, 2019.
31. Shimpi S., Chauhan B., and Shimpi P., Cyclodextrins:   
Application in Different Routes of Drug Administration, Acta 
Pharm., 55, 139-156, 2005.
32. Vandamme T.F. and Brobeck L., Poly(amidoamine) Den-
drimers as Ophthalmic Vehicles for Ocular Delivery of   
Pilocarpine Nitrate and Tropicamide, J. Control Release, 102, 
3-38, 2005.
33. Wiwattanapatapee R., Carreño-Gómez B., Malik N., and  Dun-
can R., Anionic PAMAM Dendrimers Rapidly Cross Adult Rat   
Intestine In Vitro: A Potential Oral Delivery System, Pharm. 
Res., 17, 991-998, 2000.
34. Myles M.E., Neumann D.M., and Hill J.M., Recent Progress in 
Ocular Drug Delivery for Posterior Segment Disease: Emphasis 
on Transscleral Iontophoresis, Adv. Drug. Deliv. Rev., 57, 2063-
2079, 2005.