Application of Dendrimers as Drug Carriers Support

Document Type : compile

Authors

1 Faculty of Shiraz University

2 Department of Chemistry, College of Science, Shiraz University, Shiraz, Iran

3 Department of Chemistry, Kashan University

Abstract

In recent years, dendrimers as a new class of polymeric materials have attracted lots of attention due to their unique properties, especially as drug delivery systems. In this process, dendrimers can deliver medicine directly to the affected part of the patient's body. Dendrimers can be defined as macromolecular structures with several advantages, which may undergo changes depending on the chemical nature of the drug to be delivered. Dendrimers can be defined as macromolecular structures with several advantages that depending on the chemical nature of the drug to be delivered, they may change. The reason for the high attention paid to dendrimers in drug delivery is that they have properties such as uniform size, water solubility, modifiable surface performance, high degree of branching, being multivalent, well-defined molecular weight, and available internal cavities. In addition, the high level of control over dendritic architecture distinguishes them as ideal carriers. Also, the use of dendrimers in biomedicine has attracted the attention of many scientists. Biomedicine is one of the main fields of study of dendrimers due to their capacity to improve solubility, uptake, bioavailability and targeted distribution, and their value in diagnosis and treatment. In the last decade, anti-neoplastic research on dendrimers has been widely developed and several types of poly amidoamine (PAMAM) and poly propylene imine (PPI) dendrimer complexes with doxorubicin, paclitaxel, cisplatin, melphalan, and methotrexate have been improved compared to the drug molecule alone.

Keywords

Main Subjects