1. Omer A.M., Energy, Environment and Sustainable Develop-ment, Renew. Sust. Energ., 12, 2265-2300, 2008.
2. Dickens C., Smakhtin V., McCartney M., O’Brien G., and Dahir L., Defining and Quantifying National-Level Targets,
Indicators and Benchmarks for Management of Natural Resources to Achieve the Sustainable Development Goals,
Sustainability, 11, 462, 2019.
3. Mahdi Nejad J.-e.-D., Sadeghi Habib Abad A., and Lotfi Zadeh G., The Necessity of Revitalizing the Traditional
Elements Effective on Economic Sustainability and Cost Man-agement (Case Study of Tabatabai's House), Procedia Econ.
Finance, 36, 81-88, 2016.
4. Bielek B., Green Building–Towards Sustainable Architecture, Appl. Mech. Mater., 824, 751–760, 2016.
5. Florez L. and Castro-Lacouture D., Optimization Model for Sustainable Materials Selection Using Objective and Subjec-
tive Factors, Mater. Des., 46, 310-321, 2013.
6. Sagbansua L. and Balo F., A Novel Simulation Model for Development of Renewable Materials with Waste-Natural
Substance in Sustainable Buildings, J. Clean. Prod., 158, 245-260, 2017.
7. Malhotra V.M., Reducing CO2 Emissions, ACI Concrete Int., 28, 42-45, 2006.
8. García-Gusano D., Herrera I., Garraín D., Lechón Y., and Cabal H., Life Cycle Assessment of the Spanish Cement In-
dustry: Implementation of Environmental-Friendly Solutions, Clean. Technol. Environ., 17, 59-73, 2015.
9. Jingwei C., Ping Z, and Xue W., The Research on Sino-US Green Building Rating System, Energ Procedia, 5, 1205-1209,
2011.
10. Davidovits J., Geopolymers: Inorganic Polymeric New Mate-rials, J. Therm. Anal., 37, 1633-1656, 1991.
11. Davidovits J., Geopolymers: Ceramic-Like Inorganic Poly-mers, J. Ceram. Sci. Technol., 8, 335-350, 2017.
12. Sakulich A.R., Miller S., and Barsoum M.W., Chemical and Microstructural Characterization of 20 Month Old Alkali Acti-
vated Slag Cement, J. Am. Ceram. Soc., 93, 1741-1748, 2010.
13. Sindhunata J.S.J., Lukey G.C., and Xu H., Effect of Curing Temperature and Silicate Concentration on Fly-Ash-Based
Geopolymerization, Ind. Eng. Chem., 45, 3559-3568, 2006.
14. Kriven W.M., Bell J.L., and Gordon M., Microstructure and Microchemistry of Fully-Reacted Geopolymers and Geopoly-
mer Matrix Composites, Ceram. Trans., 153, 227-250, 2003.
15. Esparham A., Factors Influencing Compressive Strength of Metakaolin-Based Geopolymer Concrete, Modares Civil Eng. J. (Persian), 20, 53-66, 2020.
16. Thomas B.S., Yang J., Mo K.H., Abdalla J.A., Hawileh R.A., and Ariyachandra E., Biomass Ashes From Agricultural
Wastes as Supplementary Cementitious Materials or Aggre-gate Replacement in Cement/Geopolymer Concrete: A Com-
prehensive Review, J. Build. Eng., 40, 102332, 2021.
17. Almutairi A.L., Tayeh B.A., Adesina A., Islam H.F, and Zeyad A.M., Potential Applications of Geopolymer Concrete in Con-struction: A Review, Case Stud. Constr. Mater., 15, e00733, 2021.
18. Albitar M., Ali M.M., Visintin P., and Drechsler M., Durabil-ity Evaluation of Geopolymer and Conventional Concretes,
Constr. Build. Mater., 136, 374-385, 2017.
19. Esparham A., Moradikhou A.B., and Mehrdadi N., Intro-duction to Synthesise Method of Geopolymer Concrete and
Corresponding Properties, J. Iran. Chem. Soc. (Persian), 4, 13-24, 2020.
20. Esparham A. and Moradikhou A.B., A Novel Type of Alkaline Activator for Geopolymer Concrete Based on Class C
Fly Ash, Adv. Civ. Eng., 3, 1-13, 2021.
21. Davidovits J., Geopolymers: Man-Made Rock Geosynthesis and the Resulting Development of Very Early High Strength Cement, J. Mater. Educ., 16, 91-91, 1994.
22. Esparham A., Moradikhou A.B., Andalib F.K., and Avanaki M.J., Strength Characteristics of Granulated Ground Blast
Furnace Slag-Based Geopolymer Concrete, Adv. Concr. Constr., 11, 219-229, 2021.
23. Neupane K., Chalmers D., and Kidd P., High-Strength Geopolymer Concrete-Properties, Advantages and Challeng-
es, Adv. Mater., 7, 15-25, 2018.
24. Singh N.B., Fly Ash-Based Geopolymer Binder: A Future Construction Material, Minerals, 8, 299, 2018.
25. Mane S. and Jadhav H., Investigation of Geopolymer Mortar and Concrete under High Temperature, Mater. Sci. Eng., 1, 384-390, 2012.
26. Moradikhou A.B., Esparham A., and Avanaki M.J., Effect of Hybrid Fibers on Water Absorption and Mechanical Strengths of Geopolymer Concrete Based on Blast Furnace Slag, J. Mater. Civ. Eng., 3, 195-211, 2019.
27. Moradikhou A.B., Hosseini M.H., Mousavi Kashi A., Emami F., and Esparham A., Effect of Simple and Hybrid Polymer
Fibers on Mechanical Strengths and High-Temperature Resis-tance of Metakaolin-Based Geopolymer Concrete, Modares
Civil Eng. J. (Persian), 20, 147-161, 2020.
28. Esparham A., Hosseini M.H., Mousavi Kashi A., Emami F., and Moradikhou A.B., Impact of Replacing Kaolinite with
Slag, Fly Ash and Zeolite on the Mechanical Strengths of Geo-polymer Concrete Based on Kaolinite, Build. Eng. Hous. Sci.
(Persian), 13, 9-15, 2020.
29. Davidovits J., Geopolymers: Ceramic-Like Inorganic Polymers, J. Ceram. Sci. Technol., 8, 335-350, 2017.
30. Lyon R.E., Foden A.J., Balaguru P., Davidovits J., and Davidovics M., Properties of Geopolymer Matrix-Carbon Fi-
ber Composites, Fire. Mater., 21, 67-73, 1997.
31. Davidovits J., Geopolymers Based on Natural and Synthetic Metakaolin: A Critical Review, Ceram. Eng. Sci. Proc., 38,
201-214, 2018.
32. Esparham A. and Moradikhou A.B., Factors Influencing Com-pressive Strength of Fly Ash-Based Geopolymer Concrete, Amirkabir J. Civil Eng. (Persian), 53, 21-21, 2021.
33. Komnitsas K., Zaharaki D., and Perdikatsis V., Effect of Syn-thesis Parameters on the Compressive Strength of Low-Calci-um Ferronickel Slag Inorganic Polymers, J. Hazard. Mater., 161, 760-768, 2009.
34. Van den Heede P. and de Belie N., Environmental Impact and Life Cycle Assessment (LCA) of Traditional and ‘Green’ Con-cretes: Literature Review and Theoretical Calculations, Cem. Concr. Compos., 34, 431-442, 2012.
35. Nabi Javid M. and Esparham A., A Review of Life Cycle As-sessment (LCA) in Quantifying Environmental Impacts of
OPC and PFA Concrete Products, Civil. Project. J. (Persian), 3, 22-31, 2021.
36. Chevalier B., Reyes T., and Laratte B., Methodology for Choosing Life Cycle Impact Assessment Sector-Specific
Indicators. Paper Presented at the DS 68-5: Proceedings of the 18th International Conference on Engineering Design (ICED 11), Impacting Society through Engineering Design, Vol. 5: Design for X/Design to X, Lyngby/Copenhagen, Denmark, 15.-19.08, 2011.
37. Dreyer L.C., Niemann A.L., and Hauschild M.Z., Comparison of Three Different LCIA Methods: EDIP97, CML2001 and
Eco-indicator 99–Does It Matter Which One You Choose, Int. J. Life. Cycle. Assess., 8, 191–200, 2003.
38. Goedkoop M., Heijungs R., Huijbregts M., de Schryver A., Struijs J., and Van Zelm R., ReCiPe 2008, A Life Cycle Impact
Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level, 1st ed.,
Report I: Characterization, The Netherlands: Ruimte en Mi-lieu, Ministerie van Volkshuisvesting, Ruimtelijke Ordening en
Milieubeheer, 1-126, 2009.
39. Weil M., Dombrowski K., and Buchwald A., Life-Cycle Analysis of Geopolymers, In Geopolymers, Woodhead, 194-
210, 2009.
40. Esparham A., Investigation of the Effects of Nano Silica Particles and Zeolite on the Mechanical Strengths of Metaka-
olin-Based Geopolymer Concrete, Int. J. Innov, 1, 82-95, 2021.
41. Esparham A. and Moradikhou A.B., A Novel Type of Alkaline Activator for Geopolymer Concrete Based on Metakaolin, J. Civ. Eng. Mater. Appl., 2, 57-65, 2021.
42. Rajan H.S. and Kathirvel P., Sustainable Development of Geopolymer Binder Using Sodium Silicate Synthesized from
Agricultural Waste, J. Clean. Prod., 286, 124959, 2021.
43. Esparham A., Moradikhou A.B., and Jamshidi Avanaki M., Effect of Various Alkaline Activator Solutions on Compres-
sive Strength of Fly Ash-Based Geopolymer Concrete, J. Civ. Eng. Mater. Appl., 4, 115-123, 2020.