Application of Electrospun Nanofibers in Regenerative Dentistry

Document Type : compile

Authors

1 Department of Polymer Engineering, Faculty of Engineering, Qom University of Technology, P. O. Box: 1519-37195, Qom, Iran

2 Hazrat-e Masoumeh University, P. O. Box: 37115-145, Qom, Iran.

Abstract

Electrospinning is a technique of fabricating nanofibrous layers with wide applications in various biomedicine fields. Electrospun webs have unique properties such as high surface area to volume ratio, improved cellular interactions, protein absorption to improve cell attachment to the web, ease of fabrication and flexibility in relative control of pores, scaffold shape and fibers alignment. For these reasons, their use in the field of tissue engineering and dental applications has received much attention. Extensive research has been done to discover the potential of electrospun nanofibers for dental and oral applications, however, there are limitations related to the electrospinning of various materials that prevent their advanced practical or clinical applications. To overcome these limitations, it is necessary to pay more attention to various aspects of biological materials and to better understand the properties, performance and controlled production of electrospun materials. The purpose of this article is to review the recent advances in electrospun nanofibers in dental applications. Electrospun layers have been used in regeneration of pulp dentin complex, caries prevention, drug delivery, and tissue regeneration for periodontium. Also, nanofiber layers have been used in the modification of dental composites and the surface of implants.

Keywords


1.  Liang D., Hsiao B.S., and Chu B., Functional Electrospun Nanofbrous Scafolds for Biomedical Applications,  Adv. 
Drug Deliv. Rev.,  59, 1392–1412, 2007.
2.  Greiner A. and Wendorf J.H., Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibres, Angew. Chem. Int. Ed., 46, 5670–5703, 2007.
3.  Zamani F., Amani Tehran M., Latif M., and Shokrgozar M.A., The  Infuence  of  Surface  Nanoroughness  of  Electrospun PLGA  Nanofbrous  Scafold  on  Nerve  Cell  Adhesion  and Proliferation, Mater. Sci. Mater . Med., 24, 1551-1560, 2013.
4.  Mokhtari F., Salehi M., Zamani F., Hajiani F., Zeighami F., and Latif M., Advances  in Electrospinning: The Production 
and Application  of  Nanofbres  and  Nanofbrous  Structures, Text. Prog.,  48, 119-219, 2016.
5.  Zhang X., Reagan M.R., and Kaplan D.L., Electrospun Silk Biomaterial Scafolds for Regenerative Medicine, Adv. Drug 
Deliv. Rev.,  61, 988–1006,  2009.
6.  James C.M.,  Assessment of Electrospinning as an  In-House Fabrication Technique for Blood Vessel Mimic Cellular 
Scafolding, MS Thesis, California Polytechnic State University, CA, USA, 2009.
7.  Deitzel J.M., Kleinmeyer J., Harris D., and Beck Tan N.C., The Efect of Processing Variables on the Morphology  of 
Electrospun Nanofbers and Textiles,  Polymer,  42, 261–272, 2001.
8.  Megelski S., Stephens J.S., Chase D.B., and Rabolt J.F., Micro-and Nanosructured Surface Morphology on Electrospun 
Polymer  Fibers,  Macromolecules,  35, 8456–8466, 2002.
9.  Yarin A.L., Koombhongse  S., and Reneker D.H., Bending Insability in Electrospinning of Nanofbers, J. Appl. Phys., 5, 
3018–3026, 2001.
10. Zafar M., Najeeb S., Khurshid Z., Vazirzadeh M., Zohaib S., Najeeb B., and Sefat F., Potential of Electrospun Nanofbers for Biomedical and Dental Applications, Materials, 9, 73, 2016.
11. Seo S.J., Kim H.W., and Lee J.H., Electrospun Nanofbers Applications in Dentisry,  J. Nanomater.,  2016, 2016. Doi: 
10.1155/2016/5931946
12. Ramakrishna  S., Fujihara K., Teo W., Lim T., and Ma Z., An Introduction to Electrospinning and Nanofbers, World Scientifc, Singapore, 2005.
13.   Nayak R., Padhye R., Kyratzis I.L., Truong Y.B., and Arnold L., Recent Advances in Nanofbre Fabrication Techniques, 
Text. Res. J., 2, 129-147, 2012.
14. Amiraliyan N., Nouri M., and Kish M.H., Electrospinning of Silk Nanofbers. I. An Invesigation of Nanofber Morphology and Process Optimization Using Response Surface Methodology, Fibers Polym., 2, 167-176, 2009.
15. Sachlos E. and Czernuszka J.T., Making Tissue Engineering Scafolds Work. Review: The Application of Solid Freeform 
Fabrication Technology to the  Production of Tissue Engineering Scafolds,  Eur. Cell Mater.,  29, 39-40, 2003.
16. Sohrabi A., Hosseini M., Abazari M.F., Karizi S.Z., Oskouei S.A.S., Hajati-Birgani N.  et al.,  Wnt Pathway Activator 
Delivery by Poly(lactide-co-glycolide)/Silk Fibroin Composite Nanofbers Promotes Dental Pulp Stem Cell Oseogenesis, J. 
Drug Deliv. Sci. Technol., 61, 102223, 2021. 
17. Kin J.J., Bae W.J., Kim J.M., Kim J.J.,  Lee E.J.,  KiM H.W.     and  Kim E.C.,  Mineralized  Polycaprolactone  Nanofbrous 
Matrix  for  Odontogenesis  of  Human  Dental  Pulp  Cells, J. Biomater.  Appl.,  7, 1069-1078, 2014. 
18. Sanaei‐rad P., Jamshidi D., Adel M., and Seyedjafari E., 
Electrospun Poly(L‐lactide) Nanofbers Coated with Mineral 
Trioxide Aggregate Enhance Odontogenic Diferentiation of 
Dental Pulp Stem Cells,  Polym. Adv. Technol.,  1, 402-410, 
2021.
19. Samprasit W., Kaomongkolgit R., Sukma M., RojanarataT., Ngawhirunpat T., and Opanasopit P., Mucoadhesive 
Electrospun Chitosan-Based Nanofbre Mats for Dental Caries Prevention,  Carbohyd. Polym.,  117, 933-940, 2015.
20. El-Sayed S., Mabrouk M., Khallaf M.E., Abd El-Hady B.M., El-Meliegy E., and Shehata M.R., Antibacterial, Drug, 
Delivery and Oseoinduction Abilities of Bioglass/Chitosan Scafolds for Dental Applications, J. Drug Deliv. Sci. Technol., 
57, 101757, 2020
21. Behler K.D., Stravato A., Mochalin V., Korneva G., Yushin G., and Gogotsi Y., Nanodiamond Polymer Composite Fibers and Coatings, ACS Nano., 2, 363-369, 2009.
22. Demir M., Horzum N., Tasdemirci A., Turan K., and Guden M., Mechanical Interlocking Between Porous Electrospun 
Polysyrene Fibers and an Epoxy Matrix, ACS Appl. Mater . Interfaces,  24, 21901-21905, 2014.
23. Gonçalves N.I., Münchow E.A., Santos J.D., Sato T.P., de Oliveira L.R., de Arruda Paes-Junior T.J., Bottino M.C., 
and Borges A.LS., The Role of Polymeric Nanofbers on the Mechanical Behavior of Polymethyl Methacrylate Resin,  J. 
Mech. Behavior Biomed. Mater.,  112, 104-072, 2020.
24. Wang Y., Hua H., Li W., Wang R., Jiang X., and Zhu M., Strong Antibacterial Dental Resin Composites Containing Cellulose Nanocrysal/Zinc Oxide  Nanohybrids,  J. Dent.,  80, 23-29, 2019.
25. Ravichandran R., Ch Ng C., Liao S., Pliszka D., Raghunath M., Ramakrishna S., and Chan C.K., Biomimetic Surface 
Modifcation of Titanium Surfaces for Early Cell Capture by Advanced Electrospinning, Biomed. Mater., 1, 015001, 2011.
26. Safn I.N., Al-Shammari A.M., Ul-Jabbar M.A., and Hussein B.M., Preparing Polycaprolactone Scafolds Using Electrospinning Technique for Consruction of Artifcial Periodontal Ligament Tissue, J. Taibah Univ. Med. Sci., 15, 363-373, 2020.
27. Kim K., Luu Y.K., Chang C., Fang D., Hsiao B.S., Chu B., and Hadjiargyrou M., Incorporation and Controlled Release 
of a Hydrophilic Antibiotic Using Poly(lactide-co-glycolide)-Based Electrospun Nanofbrous Scafolds, J. Control. Release, 
1, 47-56, 2004.
28. Tondnevis F., Ketabi M.A., Fekrazad R., Sadeghi A., Keshvari H., and Abolhasani M.M., In Vitro Characterization of 
Polyurethane-Carbon Nanotube Drug Eluting Composite Scafold for Dental Tissue Engineering Application,  J. Biomimetics Biomater. Biomed. Eng.,  47, 13-24,  2020. 
29. Srithep Y., Akkaprasa T., Pholharn D., Morris J.,  Liu S.J., Patrojanasophon P., and Ngawhirunpat T., Metronidazole-
Loaded  Polylactide Stereocomplex Electrospun Nanofber Mats for Treatment of Periodontal Disease, J. Drug Deliv. Sci. 
Technol.,  64, 102-582, 2021.
30. Zupančič Š., Casula L., Rijavec T., Lapanje A., Luštrik M., Fadda A.M., Kocbek P., and Krisl J., Susained Release of 
Antimicrobials from Double-Layer Nanofber Mats for Local Treatment of Periodontal Disease, Evaluated Using a New 
Micro Flow-Through Apparatus, J. Control. Release, 316, 223-235, 2019.
31. Shang S., Yang F., Cheng X., Frank W.X., and Jansen J.A., The Efect of Electrospun Fibre Alignment on the Behaviour 
of Rat Periodontal Ligament Cells, Eur. Cells Mater., 19, 180-192, 2010.
32. Jiang W., Li L., Zhang D., Huang Sh., Jing Zh., Wu Y., Zhao Zh., Zhao L., and Zhou Sh., Incorporation of Aligned PCL–
PEG Nanofbers into Porous Chitosan Scafolds Improved the Orientation of Collagen Fibers in Regenerated Periodontium, 
Acta Biomater., 25, 240-252, 2015.
33. Ekambaram R., Paraman V., Raja L., Suresh M.K., and Dharmalingam S., Design and Development of Electrospun 
SPEEK Incorporated with Aminated Zirconia and Curcumin Nanofbers for Periodontal Regeneration,  J. Mech. Behav. 
Biomed. Mater.,  123, 104796, 2021.
34. Peng W., Ren S., Zhang Y., Fan R., Zhou Y., Li L., Xu X., and Xu Y., MgO Nanoparticles-Incorporated PCL/Gelatin-Derived Coaxial Electrospinning Nanocellulose  Membranes for Periodontal Tissue Regeneration, Front. Bioeng. Biotechnol., 
9, 216, 2021
35. Lee O.J., Hyung W.J., Kim J.H., Lee J.M., Chang S.K., Kim J.H., Moon M.B., Park H., Sheikh F.A., and Park Ch. H., 
Development of Artifcial Dermis Using 3D Electrospun Silk Fibroin Nanofber Matrix, J. Biomed. Nanotechnol., 7, 1294-
1303, 2014.
36. Thompson C.J., Chase G.G., Yarin A.L., and Reneke D.H., Efects of Parameters on Nanofber Diameter Determined 
from Electrospinning Model, Polymer, 23, 6913-6922, 2007.