Electrospun Asymmetric Multilayer Membranes and Cell-Incorporated Constructs: Two Strategies to Accelerate Skin Wound Healing

Document Type : compile

Authors

1 1Polymer Chemistry Research Laboratory, Department of Chemistry, University of Isfahan, Iran

2 PhD candidate/ University of Isfahan

3 Faculty/ University of Isfahan

Abstract

Wound healing is a complex process, and in some cases, it is accompanied by persistent inflammation, cell dysfunction, and angiogenesis limitations, which leads to long-term medical care, high cost, and poor quality of treatment. The use of antibiotics, dressings, and skin alternatives are current methods of wound healing treatments. However, the existing wound dressings are not yet capable of fully restoring all the structural and functional characteristics of the skin. Therefore, the development of asymmetric membranes with the ability to mimic the structure and function of the human skin multilayers has been considered as more efficient structures in facilitating wound healing as well as skin tissue engineering. Wet or dry/wet phase inversion, supercritical carbon dioxide (scCO2) phase inversion, and electrospinning of polymer solutions are the common methods for the fabrication of multilayer structures. Among these, the electrospinning technique, due to its ease and versatility, the possibility of using different polymers, and the possibility of tailoring dressings in terms of specific structures of skin layers is promising. Another generation of emerging therapies is based on loading cells with the potential of wound healing acceleration. In the first part of this review, the last achievements obtained polymers used in asymmetric structures are discussed and then the electrospun structures containing special cells are reviewed.

Keywords

Main Subjects


1.  Pereira R.F. and Bartolo P.J., Traditional Therapies for Skin Wound Healing, Adv. Wound Care, 5, 208-229, 2016.
2.  Rosique R.G., Rosique M.J., and Farina Junior J.A., Curb ing Inflammation in Skin Wound Healing: A Review,  Int. J. 
Inflam., 38, 1-10, 2015.
3.  Geerligs M., Oomens C., Ackermans P., Baaijens F., and   Peters G., Linear Shear Response of the Upper Skin Layers, 
Biorheology, 48, 229-245, 2011.
4.  Iacob A.T., Drăgan M., Ionescu O.M., Profire L., Ficai A.,   Andronescu E., and Lupașcu D., An Overview of Bio po ly mer ic 
Electrospun Nanofibers Based on Polysaccharides for Wound Healing Management, Pharmaceutics, 12, 983-987, 2020.
5.  Ambekar R.S. and Kandasubramanian B., Advancements in Nanofibers for Wound Dressing: A Review,  Eur. Polym. J., 
117, 304-336, 2019.
6.  Miguel S.P., Figueira D.R., Simões D., Ribeiro M.P., Cou tin ho P., Ferreira P., and Correia I.J., Electrospun Poly meric 
Nano fi bres as Wound Dressings: A Review, Colloids Surf. B, 169, 60-71, 2018.
7.  Mulholland E.J., Electrospun Biomaterials in the Treatment and Prevention of Scars in Skin Wound Healing,  Front.   
Bioeng., 8, 481-496, 2020.
8.  Yu B., He C., Wang W., Ren Y., Yang J., Guo S., and Shi X., Asymmetric Wettable Composite Wound Dressing Pre pared 
by Electrospinning with Bioinspired Micropatterning En hanc es Diabetic Wound Healing, ACS Appl. Bio Mater., 3, 
5383-5394, 2020.
9.  Loeb S. and Sourirajan S., Sea Water Demineralization by Means of an Osmotic Membrane,  Adv. Chem.,  9, 117-132, 
1962.
10. Mousavi S.M., Zarei M., Hashemi S.A., Ramakrishna S., Chi ang W.H., Lai C.W., and Shokripour M., Asym met ric 
Membranes: A Potential Scaffold for Wound Healing Ap pli ca tions, Symmetry, 12, 1100-1118, 2020.
11. Wang S., Yan F., Ren P., Li Y., Wu Q., Fang X., and Wang C., Incorporation of Metal-Organic Frameworks into Electrospun Chitosan/Poly(vinyl alcohol) Nanofibrous Membrane with Enhanced Antibacterial Activity for Wound Dressing Applica-tion, Int. J. Biol., 158, 9-17, 2020.
12. Graça M.F., De Melo-Diogo D., Correia I.J., and Moreira A.F., Electrospun Asymmetric Membranes as Promising Wound Dressings: A Review, Pharmaceutics, 13, 183-208, 2021.
13. Broekema F.I., Van Oeveren W., Zuidema J., Visscher S.H., and Bos R.R., In Vitro Analysis of Polyurethane Foam as a 
Topical Hemostatic Agent, J. Mater. Sci. Mater. Med.,  22, 1081-1086, 2011.
14. Marcano A., Bou Haidar N., Marais S., Valleton J.M., and Duncan A.C., Designing Biodegradable PHA-Based 3D   
Scaffolds with Antibiofilm Properties for Wound Dressings: Optimization of the Microstructure/Nanostructure,  ACS   
Biomater. Sci. Eng., 3, 3654-3661, 2017.
15. Sun A.C., Kosar W., Zhang Y., and Feng X., A Study of Ther-modynamics and Kinetics Pertinent to Formation of PVDF 
Membranes by Phase Inversion, Desalination, 309, 156-164, 2013.
16. Cardea S., Sessa M., and Reverchon E., Supercritical Phase Inversion to form Drug-Loaded Poly(vinylidene fluoride-co-
hexafluoropropylene) Membranes, Ind. Eng. Chem. Res., 49, 2783-2789, 2010.
17. Temtem M., Casimiro T., and Aguiar-Ricardo A., Solvent Power and Depressurization Rate Effects in the Formation of 
Polysulfone Membranes with CO2-Assisted Phase Inversion Method, J. Membr. Sci., 283, 244-252, 2006.
18. Ahmed F.E., Lalia B.S., and Hashaikeh R., A Review on   Electrospinning for Membrane Fabrication: Challenges and 
Applications, Desalination, 356, 15-30, 2015.
19. Reis T.C., Correia I.J., and Aguiar-Ricardo A., Electrodynam-ic Tailoring of Self-Assembled Three-Dimensional Electros-pun Constructs, Nanoscale, 5, 7528-7536, 2013.
20. Chanda A., Adhikari J., Ghosh A., Chowdhury S.R., Thomas S., Datta P., and Saha, P., Electrospun Chitosan/Polycaprolac-tone-Hyaluronic Acid Bilayered Scaffold for Potential Wound Healing Applications, Int. J. Biol. Macromol., 116, 774-785, 2018.
21. Miguel S.P., Ribeiro M.P., Coutinho P., and Correia I.J.,   Electrospun Polycaprolactone/Aloe Vera_Chitosan Nanofi-
brous Asymmetric Membranes Aimed for Wound Healing   Applications, Polymers, 9, 183-207, 2017.
22. Alves P., Santos M., Mendes S., Miguel S.P., de Sá K.D.,   Cabral C.S.D., and Ferreira P., Photocrosslinkable Nanofi-
brous Asymmetric Membrane Designed for Wound Dressing, Polymers, 11, 653-671, 2019.
23. Dodero A., Alloisio M., Castellano M., and Vicini S.,   Multilayer Alginate–Polycaprolactone Electrospun Mem-
branes as Skin Wound Patches with Drug Delivery Abilities, ACS Appl. Mater., 12, 31162-31171, 2020.
24. Miguel S.P., Simões D., Moreira A.F., Sequeira R.S., and Cor reia I.J., Production and Characterization of Electros pun 
Silk Fibroin Based Asymmetric Membranes for Wound Dress ing Applications, Int. J. Biol. Macromol., 121, 524-535, 
2019.
25. Yu B., He C., Wang W., Ren Y., Yang J., Guo S., and Shi X., Asymmetric Wettable Composite Wound Dressing   
Prepared by Electrospinning with Bioinspired Micropat tern ing En hanc es Diabetic Wound Healing, ACS Appl. Bio Mater., 3, 5383-5394, 2020.
26. Zahid S., Khalid H., Ikram F., Iqbal H., Samie M., Shahza-di L., and Rehman I., Bi-layered α-Tocopherol Acetate   
Loaded Membranes for Potential Wound Healing and Skin Regen era tion, Mater. Sci. Eng. C., 101, 438-447, 2019.
27. Aragon J., Costa C., Coelhoso I., Mendoza G., Aguiar-Ri-cardo A., and Irusta S., Electrospun Asymmetric Membranes 
for Wound Dressing Applications, Mater. Sci. Eng. C.,  103, 109822-109834, 2019.
28. Figueira D.R., Miguel S.P., de Sá K.D., and Correia I.J.,  Production and Characterization of Polycaprolactone-Hyal-
uronic Acid/Chitosan-Zein Electrospun Bilayer Nanofibrous Membrane for Tissue Regeneration,  Int. J. Biol. Macromol., 
93, 1100-1110, 2016.
29. Li X., Wang C., Yang S., Liu P., and Zhang B., Electros-pun PCL/Mupirocin and Chitosan/Lidocaine Hydrochloride   
Multifunctional Double Layer Nanofibrous Scaffolds for Wound Dressing Applications, Int. J. Nanomed.,  13, 5287–
5299, 2018.
30. Rezk A.I., Lee J.Y., Son B.C., Park C.H., and Kim C.S., Bi-lay-ered Nanofibers Membrane Loaded with Titanium Oxide and Tetracycline as Controlled Drug Delivery System for Wound Dressing Applications, Polymers, 11, 1602-1613, 2019.
31. Chen S.H., Chang Y., Lee K.R., and Lai J.Y., A Three-Dimen-sional Dual-Layer Nano/Microfibrous Structure of Electrospun Chitosan/Poly(D,L-lactide) Membrane for the Improvement of Cytocompatibility, J. Membr. Sci., 450, 224-234, 2014.
32. Wu C., Chen T., Xin Y., Zhang Z., Ren Z., Lei J., and Tang S., Nanofibrous Asymmetric Membranes Self-Organized from 
Chemically Heterogeneous Electrospun Mats for Skin Tissue Engineering, Biomed. Mater., 11, 035019-035032, 2016.
33. Amini F., Semnani D., Karbasi S., and Banitaba S.N., A Novel Bilayer Drug-Loaded Wound Dressing of PVDF and PHB/
Chitosan Nanofibers Applicable for Post-Surgical Ulcers, Int. J. Polym. Mater., 68, 772-777, 2019.
34. Zhao R., Li X., Sun B., Tong Y., Jiang Z., and Wang C.,   Nitrofurazone-Loaded Electrospun PLLA/Sericin-Based   
Dual-Layer Fiber Mats for Wound Dressing Applications, RSC Adv., 5, 16940-16949, 2015.
35. Wang C., Wang Q., Gao W., Zhang Z., Lou Y., Jin H., and Mao C., Highly Efficient Local Delivery of Endothelial   
Progenitor Cells Significantly Potentiates Angiogenesis and Full- Thickness Wound Healing, Acta Biomaterialia, 69, 156-169, 2018.
36. Tang K.C., Yang K.C., Lin C.W., Chen Y.K., Lu T.Y., Chen H.Y., and Yu J., Human Adipose-Derived Stem Cell Secret-
ed Extracellular Matrix Incorporated into Electrospun Poly   (Lactic-Co-Glycolic Acid) Nanofibrous Dressing for 
En hanc ing Wound Healing, Polymers, 11,1609-1622, 2019.
37. Golchin A., Hosseinzadeh S., Jouybar A., Staji M., Soleimani M., Ardeshirylajimi A., and Khojasteh A., Wound Healing 
Im provement by Curcumin-Loaded Electrospun Nano fi bers and BFP-MSCs as a Bioactive Dressing, Polym. Adv. Tech nol., 
31, 1519-1531, 2020.
38. Meamar R., Ghasemi-Mobarakeh L., Norouzi M.R.,   Siavash M., Hamblin M.R., and Fesharaki M., Improved 
Wound Heal ing of Diabetic Foot Ulcers Using Human Pla centa-  De rived Mesenchymal Stem Cells in Gelatin   
Electrospun Nanofibrous Scaffolds Plus a Platelet-Rich   Plasma Gel: A Randomized Clinical Trial, Int. Immunophar-
macol., 101, 108282-10850, 2021.
39. Bonvallet P.P., Schultz M.J., Mitchell E.H., Bain J.L., Culpep-per B.K., Thomas S.J., and Bellis S.L., Microporous Dermal-
Mimetic Electrospun Scaffolds Preseeded with Fibroblasts Promote Tissue Regeneration in Full-Thickness Skin Wounds, 
PLoS One, 10, 0122359-0122371, 2015.
40. Tchemtchoua V.T., Atanasova G., Aqil A., Filée P., Garbacki N., Vanhooteghem O., and Colige A., Development of a   
Chitosan Nanofibrillar Scaffold for Skin Repair and Regenera-tion, Biomacromolecules, 12, 3194-3204, 201