Organogels and Their Use as Drug Delivery Vehicles

Document Type : compile

Authors

1 Faculty of Shiraz University

2 Department of Chemistry, College of Science, Shiraz University, Shiraz, Iran

3 Department of Chemistry, Kashan University

Abstract

Organogels are one of the main components of a group of gels that are noncrystalline and viscoelastic in nature and show three-dimensional and cross-linked networks in the organic liquid phase. Applications of organogels include their use in chemistry, pharmaceutical and cosmetic industries, biotechnology and food technology. Unfortunately, in recent years, the use of organogels as drug delivery systems has faced problems due to the toxicity of selective organic solvents. But recently, the synthesis of biocompatible organogels has led to the development of several biomedical and pharmaceutical applications. In this article, hydrogels are briefly reviewed, followed by a more in-depth review of gels that have been investigated for drug delivery. Over the past two decades, organogels have made significant advances as drug delivery matrices. The favorable and impressive performance of organogels is due to their ease of preparation, cost-effectiveness and their ability to have hydrophilic and lipophilic compounds. The ability of organogels to incorporate hydrophilic and hydrophobic compounds into their structure has expanded the use of organogels in various drug delivery systems. Organogels are used as drug delivery platforms to administer the active agent through various routes such as dermal, oral and injectable.

Keywords

Main Subjects


1.  Vintiloiu A. and Leroux J.C., Organogels and their Use in Drug Delivery—A Review, J. Control. Release, 125, 179-192, 
2008.
2.  Ghasemi S. and Ghezelsofloo M., Application of Polyurethane in Drug Delivery System, Polymerization (Persian), 11, 31-38, 2021.
3.  Sagiri S.S., Behera B., Rafanan R.R., Bhattacharya C., Pal K., Banerjee I., and Rousseau D., Organogels as Matrices for 
Controlled Drug Delivery: A Review on the Current State, Soft Mater., 12, 47-72, 2014.
4.  Roopan S.M. and Devipriya D., Emerging Trends of Organo-gels in Drug Chemistry, Polymer Gels, 285-310, 2018.
5.  Fages F. and Araki K.,  Low Molecular Mass Gelators, Spring er, Verlag, Berlin, 1-37, 2005.
6. Shubhendra J. and Datta M.S., Organogels as a Potential Topi cal Drug Delivery System, Int. J. Drug Regul. Aff., 1, 49-58, 2013.
7.  Esposito C.L., Kirilov P., and Roullin V.G., Organogels, Prom-ising Drug Delivery Systems: An Update of State-of-the-Art and Recent Applications, J. Control. Release, 271, 1-20, 2018.
8.  Jhawat V., Gupta S., and Saini V., Formulation and Evalua-tion of Novel Controlled Release of Topical Pluronic Lecithin 
Organogel of Mefenamic Acid, J. Drug Deliv., 23, 3573-3581, 2016.
9.  Kumar R. and Katare O.P., Lecithin Organogels as a Potential Phospholipid-Structured System for Topical Drug Delivery: A Review, AAPS Pharm. Sci. Tech., 6, 298-310, 2005.
10. Flo A., Calpena A.C., Halbaut L., Araya E.I., Fernández F., and Clares B., Melatonin Delivery: Transdermal and Trans-
buccal Evaluation in Different Vehicles, J. Pharm. Res., 33, 615-1627, 2016.
11.  Ibrahim M.M., Hafez S.A., and Mahdy M.M., Organogels, Hydrogels and Bigels as Transdermal Delivery Systems for 
Diltiazem Hydrochloride, Asian J. Pharm. Sci., 8, 48-57, 2013.
12. Mady  F.M.,  Essa H.,  El-Ammawi T.,  Abdelkader  H.,   and  Hussein A.K., Formulation and Clinical Evaluation of Silymarin Plu ronic-Lecithin Organogels for Treatment of Atopic Der-matitis, Drug Des. Devel. Ther., 10, 1101, 2016.
13. Esposito E., Drechsler M., Huang N., Pavoni G., Cortesi R., Santonocito D., and Puglia C., Ethosomes and Organogels for Cutaneous Administration of Crocin, Biomed. Microdevices, 18, 1-12, 2016.
14. Esposito E., Menegatti E., and Cortesi R., Design and Characterization of Fenretinide Containing Organogels, Mater. 
Sci. Eng. C, 33, 83-389, 2013.
15. Główka E., Wosicka-Frąckowiak H., Hyla K., Stefanowska J., Jastrzębska K., Klapiszewski Ł., Jesionowski T. et al., 
Polymeric Nanoparticles-Embedded Organogel for Roxithro-mycin Delivery to Hair Follicles, Eur. J. Pharm. Biopharm., 
88, 75-84, 2014.
16. Zeng L., Lin X., Li P., Liu F.Q., Guo H., and Li W.H., Recent Advances of Organogels: From Fabrications and Functions to 
Applications, Prog. Org. Coat., 159, 106-417, 2021. 
17. Wang D., Zhao J., Liu X., Sun F., Zhou Y., Teng L., and Li Y., Parenteral Thermo-Sensitive Organogel for Schizophrenia 
Therapy, In Vitro and In Vivo Evaluation, Eur. J. Pharm. Sci., 60, 40-48, 2014.
18. Eylon B.H., Shagan A., Shabtay-Orbach A., Gross A., and Mizrahi B., Injectable Drug Delivery System based on In 
Situ Self-Assembly of Liquid Star Polyethylene Glycol–Poly(lactic-co-glycolic acid), Adv. NanoBiomed Res.,  1, 
2000069, 2021.
19. Madan M., Bajaj A., Lewis S., Udupa N., and Baig J.A., In Situ Forming Polymeric Drug Delivery Systems,  Indian J. 
Pharm. Sci., 71, 242, 2009.
20. Li Z., Cao J., Li H., Liu H., Han F., Liu Z., Tong C., and Li S., Self-Assembled Drug Delivery System Based on Low-Molec-
ular-Weight Bis-Amide Organogelator: Synthesis, Properties and In Vivo Evaluation, Drug. Deliv., 23, 3168-3178, 2016.21. Borgheti-Cardoso L.N., Kooijmans S.A., Fens M.H., Van der Meel R., Vicentini F.T., Fantini M.C., Bentley M.V.L. et al., In 
Situ Gelling Liquid Crystalline System as Local Sirna Delivery System, Mol. Pharm., 14, 681-1690, 2017.
22. Motulsky A., Lafleur M., Couffin-Hoarau A.C., Hoarau D., Boury F., Benoit J.P., and Leroux J.C., Characterization and 
Biocompatibility of Organogels Based on L-Alanine for Par enteral Drug Delivery Implants, Biomaterials,  26, 6242-
6253, 2005. 
23. Wang K., Jia Q., Han F., Liu H., and Li S., Self-Assembled   L-Alanine Derivative Organogel as In Situ Drug Delivery 
Implant:Characterization, Biodegradability, and Biocompat-ibility, Drug. Dev. Ind. Pharm., 36, 1511-1521, 2010.
24. Plourde F., Motulsky A., Couffin-Hoarau A.C., Hoarau D., Ong H., and Leroux J.C., First Report on the Efficacy of           
L-Alanine-Based In Situ-Forming Implants for the Long-Term Parenteral Delivery of Drugs, J. Control. Release, 108, 433-
441, 2005.
25. Le Renard P.E., Jordan O., Faes A., Petri-Fink A., Hofmann H., Ruefenacht D., Bosman F. et al., The In Vivo Performance of Magnetic Particle-Loaded Injectable, In Situ Gelling, Carriers for the Delivery of Local Hyperthermia,  Biomaterials,  31, 691-705, 2010.
26. Le Renard P.-E., Injectable Formulations Forming an Im-plant In Situ as Vehicle of Silica Microparticles Embedding 
Superparamagnetic Iron Oxide Nanoparticles for the Local,   Magnetically Mediated Hyperthermia Treatment of Solid 
Tumors, University of Geneva, France, 21-604, 2011.
27. Esposito C.L., Tardif V., Sarrazin M., Kirilov P., and Roul-lin V.G., Preparation and Characterization of 12-HSA-Based 
Organogels as Injectable Implants for the Controlled Delivery of Hydrophilic and Lipophilic Therapeutic Agents, Mater. Sci. Eng. C, 114, 110-999, 2020.
28. Yu H. and Huang Q., Improving the Oral Bioavailability of Curcumin Using Novel Organogel-Based Nanoemulsions, J.
Agric. Food Chem., 60, 5373-5379, 2012.
29. Fan Y., Gao L., Yi J., Zhang Y., and Yokoyama W., Develop-ment of β-Carotene-Loaded Organogel-Based Nanoemulsionwith Improved In Vitro and In Vivo Bioaccessibility, J. Agric.Food Chem., 65, 6188-619, 2017.
30. Iwanaga K., Sumizawa T., Miyazaki M., and Kakemi M., Characterization of Organogel as a Novel Oral Controlled 
Release Formulation for Lipophilic Compounds,  Int. J.Pharm., 388, 123-128, 2010.
31. Camelo S.R.P.,  Encapsulation De Molécules HydrophobesPar Des Structures Bi-Gels Générées Par Prilling: Relation
Structure-Propriétés, PhD Dissertation, Ecole Nationale des Mines d'Albi-Carmaux, 2015.
32. Camelo S.R.P., Franceschi S., Perez E., Girod Fullana S., andRé M.I., Factors Influencing the Erosion Rate and the Drug 
Release Kinetics from Organogels Designed as Matrices for Oral Controlled Release of a Hydrophobic, Drug. Drug. Dev.
Ind. Pharm., 42, 985-997, 2016.
33. Chung O.,  Sterol-Based Organogel Drug Delivery Systems,MSc Thesis, Department of Chemical Engineering and
Applied Chemistry University of Toronto, 2012.
34. Mujawar N., Ghatage S., Navale S., Sankpal B., Patil S., and Patil S., Nasal Drug Delivery: Problem Solution and Its
 Application, Int. J. Curr. Pharm. Res., 4, 1231, 2014.
35. Pisal S., Shelke V., Mahadik K., and Kadam S., Effect ofOrganogel Components on In Vitro Nasal Delivery of
Propranolol Hydrochloride, AAPS Pharm. Sci. Tech.,  5, 92-100, 2004.