An Overview of the Application of Nanomaterials and Biodegradable Polymers in the Food Packaging Industry

Document Type : compile

Author

Shahreza Islamic Azad University

Abstract

Oil-based products have led to a brilliant and magnificent civilization for the development of human society, but these materials have also caused serious damage to the environment and human health. Food coating with biodegradable polymers and nanomaterials can increase the preservation of nutritional value and shelf-life, improve the quality, and increase food safety, and can be a natural and suitable alternative to common plastic materials used in packaging industry. Ensuring the protection of the quality and taste of food products, increasing the durability, and reducing the packaging wastes is the priority of researchers. Synthetic plastics are widely used, especially in food packaging industry, and cause problems in disposal and recycling. These issues have caused increasing concerns about environmental pollution and destruction. Therefore, it is possible to address these challenges by developing of biodegradable polymers and nanomaterials. In addition, consumers demand sustainable (durable) packaging materials that reduce the environmental problems associated with plastic wastes. In this article, the applications of nanomaterials and biodegradable polymers in the packaging of food products are reviewed. In these composite materials, effective nanoparticles (i.e., gold, copper, copper oxide, and silver nanoparticles) have combined with biodegradable and eco-friendly polymers (i.e., gelatin and cellulose obtained from natural resources).

Keywords

Main Subjects


1. Realini C.E. and Marcos B.,  Active and Intelligent  Packaging Systems for a Modern Society, Meat Sci., 98, 404-419, 2014. 
2. Jeevahan  J.J., Chandrasekaran  M., Venkatesan S., Sriram V., Joseph  G.B., Mageshwaran G., and  Durairaj R., Scaling up 
Difficulties and Commercial Aspects of Edible Films for Food Packaging: A Review, Trends Food Sci. Technol., 100, 210-
222, 2020.
3.  Barnes D.K., Galgani F., Thompson R.C., and Barlaz M., Accumulation and Fragmentation of Plastic Debris in Global 
Environments,  Philos.  Trans. R. Soc. London, Ser.  B,  364, 1985-1998, 2009. 
4. Harrison J.P., Hoellein T.J., Sapp M., Tagg A.S., Ju-Nam Y., and Ojeda J.J., Microplastic-Associated Biofilms: A Comparison of Fresh Water and Marine Environments, In  Fresh Water Microplastics, Springer, Cham., 181-201, 2017.
5. De Oliveira Filho J.G., Rodrigues J.M., Valadares A.C.F., de Almeida A.B., de Lima T.M., Takeuchi K.P., and Dyszy F.H., 
Active Food Packaging: Alginate Films with Cottonseed Protein Hydrolysates, Food  Hydrocoll., 92, 267-275, 2019. 
6. Da Costa J.P., Santos P.S., Duarte A.C., and Rocha-Santos T., (Nano) Plastics in the Environment–Sources, Fates and 
Effects,  Sci. Total Environ.,  566, 15-26, 2016. 
7. Fadare O.O., Wan B., Guo L.-H., and Zhao L., Microplastics from Consumer Plastic Food Containers: Are We Consuming 
It?, Chemosphere, 253, 126787, 2020. 
8. Popović S.Z., Lazić V.L., Hromiš N.M., Šuput D.Z., and Bulut S.N, Biopolymer Packaging Materials for Food Shelf-Life 
Prolongation, In Biopolymers for Food Design,  Academics, 223-277, 2018.
9. Chakravartula S.S.N., Lourenço R.V., Balestra F., Bittante A.M.Q.B., do Amaral Sobral P.J., and Dalla Rosa M., 
Influence of Pitanga (Eugenia Uniflora L.) Leaf Extract and/or Natamycin on Properties of Cassava Starch/Chitosan Active 
Films,  Food Packag. Shelf Life,  24, 100498, 2020. 
10. Hassan B., Chatha S.A.S., Hussain A.I., Zia K.M., and Akhtar N., Recent Advances on Polysaccharides, Lipids and Protein 
Based Edible Films and Coatings: A Review, Int.  J. Biol. Macromol.,  109, 1095-1107, 2018. 
11. Akhter R., Masoodi F., Wani T.A., and Rather S.A., Functional Characterization of Biopolymer Based Composite Film: 
Incorporation of Natural Essential Oils and Antimicrobial Agents, Int. J. Biol. Macromol.,  137, 1245-1255, 2019. 
12. Spasojević L., Katona J., Bučko S., Savić S.M., Petrović L., Budinčić J.M., and Sharipova  A., Edible Water Barrier Films 
Prepared from Aqueous Dispersions of Zein Nanoparticles, LWT, 109, 350-358, 2019. 
13. Kadam S.U., Pankaj S., Tiwari B.K., Cullen P., and O’Donnell C.P., Development of Biopolymer-Based Gelatin and Casein Films Incorporating Brown Seaweed Ascophyllum Nodosum Extract, Food Packag. Shelf Life, 6, 68-74, 2015. 
14. Biswal A.K., Hariprasad P., and Saha S., Efficient and Prolonged Antibacterial Activity from Porous PLGA Microparticles and Their Application in Food Preservation, Mater. Sci. Eng. C, 108, 110496, 2020. 
15. Holman B.W., Kerry J.P., and Hopkins D.L., Meat Packaging Solutions to Current Industry Challenges: A Review, Meat 
Sci., 144, 159-168, 2018. 
16. Ortiz-Benítez E.A., Velázquez-Guadarrama N., Durán Figueroa N.V., Quezada H., and Olivares-Trejo J.d.J., Antibacterial 
Mechanism of Gold Nanoparticles on Streptococcus Pneumoniae,  Metallomics,  11, 1265-1276, 2019. 
17. Cui Y., Zhao Y., Tian Y., Zhang W., Lü X., and Jiang X., The Molecular Mechanism of Action of Bactericidal Gold 
Nanoparticles on Escherichia coli,  Biomaterials,  33, 2327-2333, 2012. 
18. Chowdhury S., Teoh Y.L., On K.M., Zaidi N.S.R., and Mah S.-K., Polyvinyl Alcohol Crosslinked Composite Packaging 
Film Containing Gold Nanoparticles on Shelf Life Extension of Banana, Food Packag. Shelf Life, 24, 100463, 2020. 
19. Tsai T.-T., Huang T.-H., Chang C.-J., Ho N.Y.-J., Tseng Y.-T., and Chen C.-F., Antibacterial Cellulose Paper Made with 
Silver-Coated Gold Nanoparticles,  Sci. Rep.,  7, 1-10, 2017. 
20. Yah C.S., The Toxicity of Gold Nanoparticles in Relation to their Physiochemical Properties, Biomed. Res. Trace Eleb., 24, 400-413, 2013. 
21. Shankar S. and Rhim J.-W., Amino Acid Mediated Synthesis of Silver Nanoparticles and Preparation of Antimicrobial Agar/Silver Nanoparticles Composite Films,  Carbohydr. Polym., 130, 353-363, 2015. 
22. Ahmed J., Arfat Y.A., Bher A., Mulla M., Jacob H., and Auras R., Active Chicken Meat Packaging Based on Polylactide 
Films and Bimetallic Ag–Cu Nanoparticles and Essential Oil, J. Food Sci., 83, 1299-1310, 2018.
23. Din M.I., Arshad F., Hussain Z., and Mukhtar M., Green Adeptness in the Synthesis and Stabilization of Copper 
Nanoparticles: Catalytic, Antibacterial, Cytotoxicity, and Antioxidant Activities, Nanoscale Res. Lett., 12, 1-15, 2017. 
24. Katsumiti A., Thorley A.J., Arostegui I., Reip P., Valsami-Jones E., Tetley T.D., and Cajaraville M.P., Cytotoxicity 
and Cellular Mechanisms of Toxicity of CuO NPs in Mussel Cells in Vitro and Comparative Sensitivity with Human Cells, 
Toxicol. In Vitro,  48, 146-158, 2018.
25. Shankar S., Wang L.F., and Rhim J.-W., Preparation and Properties of Carbohydrate-Based Composite Films 
Incorporated with CuO Nanoparticles, Carbohydr. Polym., 169, 264-271, 2017. 
26. Duncan T.V., Applications of Nanotechnology in Food Packaging and Food Safety: Barrier Materials, Antimicrobials 
and Sensors,  J. Colloid Interface Sci.,  363, 1-24, 2011.
27. Yun’an Qing L.C., Li R., Liu G., Zhang Y., Tang X., Wang J., and Qin Y., Potential Antibacterial Mechanism of Silver 
Nanoparticles and the Optimization of Orthopedic Implants by Advanced Modification Technologies,  Int. J. Nanomed.,  13, 3311–3327, 2018.
28. Long Y.-M., Hu L.G., Yan X.-T., Zhao X.C., Zhou Q.-F., Cai Y., and Jiang G.-B., Surface Ligand Controls Silver Iion 
Release of Nanosilver and Its Antibacterial Activity Against Escherichia Coli.,  Int. J. Nanomed.,  12, 3193–3206, 2017. 
29. Carrola J., Bastos V., Jarak I., Oliveira-Silva R., Malheiro E., Daniel-da-Silva A.L., and Duarte I.F., Metabolomics of Silver 
Nanoparticles Toxicity in HaCaT Cells: Structure–Activity Relationships and Role of Ionic Silver and Oxidative Stress. 
Curr. Nanotoxic. Prev., 10, 1105-1117, 2016. 
30. Jiang X., Lu C., Tang M., Yang Z., Jia W., Ma Y., and Wang H., Nanotoxicity of Silver Nanoparticles on HEK293T Cells: 
A Combined Study Using Biomechanical and Biological Techniques,  ACS Omega,  3, 6770-6778, 2018. 
31. Kim M.J. and Shin S., Toxic Effects of Silver Nanoparticles and Nanowires on Erythrocyte Rheology,  Food Chem. 
Toxicol.,  67, 80-86, 2014. 
32. Wu Z., Huang X., Li Y.C., Xiao H., and Wang X., Novel Chitosan Films with Laponite Immobilized Ag Nanoparticles 
for Active Food Packaging, Carbohydr. Polym., 199, 210-218, 2018.
33. Tran C.D., Prosenc F., and Franko M., Facile Synthesis, Structure, Biocompatibility and Antimicrobial Property of 
Gold Nanoparticle Composites from Cellulose and Keratin, J. Colloid Interface Sci.,  510, 237-245, 2018. 
34. Roy S., Shankar S., and Rhim J.-W., Melanin-Mediated Synthesis of Silver Nanoparticle and its Use for the Preparation 
of Carrageenan-Based Antibacterial Films, Food Hydrocoll., 88, 237-246, 2019.
35. Abreu A.S., Oliveira M., de Sá A., Rodrigues R.M., Cerqueira M.A., Vicente A.A., and Machado A., Antimicrobial 
Nanostructured Starch based Films for Packaging, Carbohydr. Polym.,  129, 127-134, 2015.
36. Sarwar M.S., Niazi M.B.K., Jahan Z., Ahmad T., and Hussain A., Preparation and Characterization of PVA/Nanocellulose/
Ag Nanocomposite Films for Antimicrobial Food Packaging, Carbohydr. Polym., 184, 453-464, 2018. 
37. Jamróz E., Kopel P., Juszczak L., Kawecka A., Bytesnikova Z., Milosavljevic V., and Makarewicz M., Development 
of Furcellaran-Gelatin Films with Se-AgNPs as an Active Packaging System for Extension of Mini Kiwi Shelf Life, 
Food Packag. Shelf Life,  21, 100339, 2019. 
38. Arfat Y.A., Ahmed J., Hiremath N., Auras R., and Joseph A., Thermo-mechanical, Rheological, Structural, and Antimicrobial Properties of Bionanocomposite Films Based on Fish Skin Gelatin and Silver-Copper Nanoparticles, Food Hydrocoll., 62, 191-202, 2017.