Preparation of Protective Film for Fruits from Lignocellulosic Materials and Application of Short Ozone Pretreatment on Their Dissolution

Document Type : compile

Authors

1 Phd. Student, Department of Wood and Paper Sciences and Industries, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

2 Professor, Department of Wood and Paper Sciences and Industries, University of Tehran

3 Assistant Professor, Department of Wood and Paper Sciences and Industries, University of Tehran

Abstract

The perishable nature of fruits and vegetables makes their shelf-life limited. Environmental factors, transportation and preservation conditions through postharvest can decrease the storage time and quality. Therefore, prolonging supply period of fruits and vegetables by using safer postharvest treatments lead preservation methods to edible coatings. Active edible coatings include different types of functional substances can be considered as a preservation method to improve strategies for improving the quality, safety and shelf-life of fruits and vegetables after storage. In this article, an overview of the basics and methods of using lignocellulosic materials to create edible coating films and the recent challenges and developments of this type of lignocellulosic material application are presented. A review of the scientific sources shows that cellulose, lignin and chitosan are polysaccharides that have high potential in the production of edible coatings. These types of coatings are commonly odorless, tasteless, non-toxic, non-allergenic, water soluble, transparent, and resistant to oil and fats. In addition, these coatings can be good carriers for active additives, antimicrobial compounds, antioxidants, anti-browning agents, texture enhancers, and nutraceuticals to prevent unwanted reactions and enzymatic or biochemical damage to inhibit microbial decay and enzymatic or biochemical damage and prevent physical textural deterioration in fruits and vegetables during storage.

Keywords

Main Subjects


1.  Panahirad S.,  Dadpour M., Peighambardous S.H.,  Soltanzadeh M., Gullón B., Alirezalu K.,  and Lorenzo J.M.,  Applications of Carboxymethyl Cellulose -and Pectin-Based Active Edible Coatings in Preservation of Fruits and Vegetables: A Review, Trends Food Sci. Technol., 110, 663-673, 2021. 
2.  Flores-López M.L., Cerqueira M.A., de Rodríguez D.J., and Vicente A.A., Perspectives on Utilization of Edible Coatings 
and Nano-laminate Coatings for Extension of Posharves Storage of Fruits and Vegetables, Food Eng. Rev., 8, 292-305, 
2016.
3.  Ma L., Zhang M., Bhandari B., and Gao Z., Recent Developments in Novel Shelf Life Extension Technologies of Fresh-Cut Fruits and Vegetables, Trends Food Sci. Technol., 64, 23-38, 2017.
4.  Ocwelwang A.R.,  Laser and Ultrasound Radiation Pretreatment of Cellulose in Dissolving Wood Pulp, Ph.D Dissertation, College of Agriculture, South Africa, December 2017.
5.  Kumar P. and  Sethi S.,  Edible  Coating  for  Fresh  Fruit: A Review,   Int. J. Curr. Microbiol.   Appl. Sci., 7, 2619-2626, 2018.
6.  Ghidelli C. and Pérez-Gago M.B., Recent Advances in Modifed Atmosphere Packaging and Edible Coatings to Maintain Quality of Fresh-Cut Fruits and Vegetables, Crit. Rev. Food Sci. Nutr.,  58, 662-679, 2018.
7.  Sapper M. and Chiralt A., Starch-Based Coatings for Preservation of Fruits and Vegetables, Coatings, 8, 152, 2018.
8.  Hasan S.K., Ferrentino G., and Scampicchio M., Nano-emulsion as Advanced Edible Coatings to Preserve the Quality 
of Fresh‐Cut Fruits and Vegetables: A Review, Int. J. Food Sci. Technol.,  55, 1-10, 2020.
9.  Müller K. and Schmid M., Alginate-Based Edible Films and Coatings for Food Packaging Applications, Foods,  7, 2018.
10. Jianglian D. and Shaoying Z., Application of Chitosan Based Coating in Fruit and Vegetable Preservation: A Review,  J. 
Food Proc. Technol.,  4, 227, 2013.
11.   Karbowiak T., Hervet H., Léger L., Champion D., Debeaufort F., and Voilley A., Efect of Plasicizers (Water and Glycerol) 
on the Difusion of a Small Molecule in Iota-Carrageenan Biopolymer Films for Edible Coating Application, Biomacromolecules,  7, 2011-2019, 2006.
12. Vildan E., Ismail T., and Selman T., The Efect of Edible Coatings on Physical and Chemical Characterisics of Fruit 
Bars,  J. Food. Lipids,  14, 1775-1783, 2020.
13. Nor S.M. and Ding P., Trends and Advances in Edible Biopolymer Coating for Tropical Fruit: A Review, Food Res. 
Int.,  134, 109208, 2020.
14. Bhardwaj A., Alam T., Sharma V., Alam M.S., Hamid H., and Deshwal G.K., Lignocellulosic Agricultural Biomass as 
a Biodegradable and Eco-Friendly Alternative for Polymer-Based Food Packaging, J. Packag. Technol. Res., 4, 205–216, 
2020.  
15. Travaini R., Martín-Juárez J., Lorenzo-Hernando A., and Bolado-Rodríguez S., Ozonolysis: An Advantageous retreatment for Lignocellulosic Biomass Revisited,  Bioresour. Technol.,  199, 2-12, 2016.
16. Falguera V., Quintero J.P., Jiménez A., Muñoz J.A. and Ibarz A., Edible Films and Coatings: Structures, Active Functions 
and Trends in their Use, Trends Food Sci. Technol., 22, 292-303, 2011.
17. Embuscado M.E. and Huber K.C., Edible Films and Coatings for Food Applications, Springer, New York, USA, 9, 2009.
18. McHugh T.H. and Senesi E., Apple Wraps: A Novel Method to Improve the Quality and Extend the Shelf Life of Fresh‐Cut Apples, J. Food Sci., 65, 480-485, 2000
19. Cisneros‐Zevallos L. and Krochta J.M., Dependence of Coating thickness on Viscosity of Coating Solution Applied 
to Fruits and Vegetables by Dipping Method, J. Food Sci., 68, 503-510, 2003.
20. Ghanbarzadeh B., Almasi H., and Entezami A.A., Physical Properties of Edible Modifed Starch/Carboxymethyl Cellulose Films,  Innovative Food Sci. Emerging Technol., 11, 697-702, 2010.
21. Fishman M.L., Cofn D.R., Onwulata C.I., and Konsance R.P., Extrusion of Pectin and Glycerol with Various Combinations 
of Orange Albedo and Starch, Carbohydr. Polym.,  57, 401-413, 2004.
22. Kocira A., Kozłowicz K., Panasiewicz K., Staniak M., Szpunar-Krok E., and Hortyńska P., Polysaccharides as Edible 
Films and Coatings: Characterisics and Infuence on Fruit and Vegetable Quality-A Review,  Agronomy,  11, 813, 2021.
23. Otoni C.G., Avena‐Busillos R.J., Azeredo H.M., Lorevice M.V., Moura M.R., Mattoso L.H., and  McHugh T.H., Recent 
Advances on Edible Films Based on and Vegetables-A Review, Compr. Rev. Food Sci. Food Saf., 16, 1151-1169, 2017.
24. Yang Y., Ren J., Luo C., Yuan R., and Ge L., Fabrication of l-Menthol Contained Edible Self-healing Coating Based on 
Gues-Hos Interaction, Colloids Surf. A., 597, 124743, 2020.
25. Hubbe M.A., Ferrer A., Tyagi P., Yin Y., Salas C., Pal L., and Rojas O.J., Nanocellulose in Thin Films, Coatings, and Plies 
for Packaging Applications: A Review,  BioResources,  12, 2143-2233, 2017.
26. Shimizu M., Saito T., and Isogai A., Water-Resisant and High Oxygen-Barrier Nanocellulose Films with Interfbrillar Cross-linkages Formed through Multivalent Metal Ions, J. Membr. Sci., 500, 1-7, 2016.
27. Fu F., Zhang W., Zhang R., Liu L., Chen S., Zhang Y. and Yau J., NaOH/Urea Solution Spinning of Cellulose Hybrid Fibers Embedded with Ag Nanoparticles: Infuence of Stretching on sructure and Properties, Cellulose, 25, 7211-7224, 2018.
28. Chen K., Xu W., Ding Y., Xue P., Sheng P., Qiao H., and He J., Hemp-Based All-Cellulose Composites through Ionic Liquid Promoted Controllable Dissolution and Structural Control, Carbohydr. Polym., 235, 116027, 2020.
29. Häkkinen R., Carbohydrates in Deep Eutectic Solvents, Ph.D Dissertation, Insitute of chemisry of Renewable Resources, Ausria, 2020.
30. Isci A., Erdem G.M.,  Elmaci S.B.,  Sakiyan O.,  Lamp A., and Kaltschmitt M.,  Efect  of  Microwave-Assised  Deep  Eutectic Solvent  Pretreatment  on  Lignocellulosic  Structure  and Bioconversion   of  Wheat   Straw, Cellulose, 27, 8949-8962, 2020.
31. Shi Z., Liu Y., Xu H., Yang Q., Xiong C., Kuga S., and Matsumoto Y., Facile Dissolution of Wood Pulp in Aqueous NaOH/Urea Solution by Ball Milling Pretreatment, Ind. Crops Prod.,  118, 48-52, 2018.
32. Li X., Ye J., Chen J., Yu J., Ding M., and Hong J., Dissolution of Wheat Straw with Aqueous NaOH/Urea Solution, Fibers 
Polym., 16, 2368-2374, 2015.
33. Wei Q.Y., Lin H., Yang B., Li L., Zhang L.Q., Huang H.D., et al., Structure and Properties of All-Cellulose Composites Prepared by Controlling the Dissolution Temperature of a NaOH/Urea Solvent, Ind. Eng. Chem. Res., 59, 10428-10435, 2020.
34. Fathi Z., Hamzeh Y., and Abdolkhani A., Preparation of Lignocellulosic Film by Dissolving of Rice Straw in Alkaline 
Solution,  Packaging (Persian),   43,   18-29,  2020.
35. Sirviö J.A. and Heiskanen J., Room-Temperature Dissolution and Chemical Modifcation of Cellulose in Aqueous 
Tetraethylammonium Hydroxide–Carbamide Solutions, Cellulose,  27, 1933-1950, 2020.
36. Su Y., Yang B., Liu J., Sun B., Cao C., Zou X. et al., Prospects for Replacement of Some Plasics in Packaging with Lignocellulose Materials: A Brief Review, BioResources, 13, 4550-4576, 2018.
37. Ghorbani M., Kianmehr M.H., Arabhosseini A., Sarlaki E., Asadi Alamouti A., and Sadeghi, R., Ozonolysis: A Novel and 
Efective Oxidation Technique for Lignocellulosic Biomass Pretreatment, In Proceedings of 12th National Congress on 
Biosysems Engineering and Agricultural Mechanization, 5-7 February, Iran, 2020.
38. Benko E.M. and Lunin V.V., Ozone Pretreatment and Bioconversion of Pine Wood to Monosaccharides,  Russ. J. 
Phys. Chem. A,  94, 226-230, 2020.
39. Rosen Y., Mamane H., and GerchmanY., Short Ozonation of Lignocellulosic Wase as Energetically Favorable Pretreatment, Bioenergy Res., 12, 292-301, 2019.