In situ Forming Systems for Wound Healing: A Review

Document Type : compile

Authors

1 Department of Chemical & Polymer Engineering, Faculty of Engineering, Yazd University, Yazd, Iran

2 Department of Chemical & Polymer Engineering, Faculty of Engineering, Yazd University, Yazd, Iran

Abstract

In-situ forming systems are liquid or viscous injectable materials that after being injected into the body, due to mixing with reactive substances or in response to new conditions (temperature, pH, presence of special molecules or ions, visible or ultraviolet light radiation), they formed a semi-solid material or gel. In the recent years, due to the unique characteristics of in situ forming systems, preparation and investigation of these systems for wound healing have gained increasing attentions. In addition to easy and non-invasive injection of in situ forming systems, these materials can completely fill irregular wound defects and adhere to the wound edge tissues. Also these materials can simultaneously act as a controlled drug delivery system, cell carrier/tissue scaffold, hemostatic agent and tissue-adhesive. Until now, several physical, chemical and enzymatically cross-linking methods have been used to prepare in situ forming systems/hydrogels. In this review, various emerging and innovative approaches being developed and utilized for the preparation of in situ forming systems/hydrogels for wound dressing are reviewed. Also challenges and future prospects of these systems are discussed.

Keywords

Main Subjects


1.  Alipour H., Koosha M., Sarraf Shirazi M.J., and Jebali A., Modern Commercial Wound Dressings and Introducing New Wound Dressings for Wound Healing: A Review, Polymerization (persian), 6, 65-80, 2017.
2.  Chouhan D., Dey N., Bhardwaj N., and Mandal B.B., Emerg-ing and Innovative Approaches for Wound Healing and Skin Regeneration: Current Status and Advances,  Biomaterials, 216, 119267, 2019.
3.  Yang J.A., Yeom J., Hwang B.W., Hofman A.S., and Hahn S.K., In Situ Forming Injectable Hydrogels for Regenerative Medicine, Prog. Polym. Sci., 39, 1973-1986, 2014.
4.  Hosseini M. and Mobedi H., Injectable In Situ Forming Drug Delivery Sysems Based on Biodegradable Polymers,   
Polymerization (persian), 6, 3-12, 2016.
5.  Kamoun E.A., Kenawy E.-R.S., and Chen X., A Review on Polymeric Hydrogel Membranes for Wound Dressing Ap pli cations: PVA-Based Hydrogel Dressings,  J. Am. Acad. Derm.,  8, 217-233, 2017.
6.  Zahedi P., Rezaeian I., Ranaei‐Siadat S.O., Jafari S.H., and Supaphol P., A Review on Wound Dressings with an Emphasis 
on Electrospun Nanofbrous Polymeric Bandages, Polym. Adv. Technol., 21, 77-95, 2010.
7.  Wood R., Williams R., and Hughes L., Foam Elasomer Dressing in the Management of Open Granulating Wounds: Experience with 250 Patients, J. Brit. Surg., 64, 554-557, 1977.
8.  Ruel-Gariepy E. and Leroux J.-C., In Situ Forming Hydrogels-Review of Temperature-Sensitive Sysems,  Eur. J. Pharm. 
Biopharm., 58, 409-426, 2004.
9.  Dimatteo R., Darling N.J., and Segura T., In Situ Forming In jectable Hydrogels for Drug Delivery and Wound Repair, Adv. Drug. Deliv.  Rev.,  127, 167-184, 2018.
10. Sharma S., Madhyasha H., Laxmi Swetha K., Maravajjala K.S., Singh A., Madhyasha R., Nakajima Y., and Roy A., De velopment of an In Situ Forming, Self-Healing Scafold forDermal Wound Healing: in-Vitro and In Vivo Studies, Mater. Sci. Eng. C, 128, 112263, 2021.
11. Casillo L., Casro-Alpízar J.A., Lopretti M., and Vega Bau drit J., Exploration of Bioengineered Scafolds Composed of Ther mo-responsive Polymers for Drug Delivery in Wound Healing,  Int. J. Mol. Sci., 22, 1408, 2021.
12. Zakerikhoob M., Abbasi S., Yousef G., Mokhtari M., and Noorbakhsh M.S., Curcumin-Incorporated Crosslinked Sodi um Alginate-g-Poly(N-isopropyl acrylamide) Thermo-responsive Hydrogel as an In Situ Forming Injectable Dressing for Wound Healing: In Vitro Characterization and In Vivo Evaluation,  Carbohydr. Polym.,  271, 118434, 2021.
13. Corrente F., Amara H.M.A., Pacelli S., Paolicelli P., and Casadei M.A., Novel Injectable and In Situ Cross-Linkable   Hydrogels of Dextran Methacrylate and Scleroglucan Derivatives: Preparation and Characterization,  Carbohydr. Polym.,  92, 1033-1039, 2013.
14. Eke G., Mangir N., Hasirci N., MacNeil S., and Hasirci V., Development of a UV Crosslinked Biodegradable Hydrogel Containing Adipose Derived Stem Cells to Promote Vascular-ization for Skin Wounds and Tissue Engineering, Biomateri-
als, 129, 188-198, 2017.
15. Moradian A., Zandi M., Behzadnasab M., and Pezeshki-Modaress M., Synthesis Methods of In Situ Forming Injectable Hydrogels and Their Applications in Tissue Engineering: A Review,  Iran. J. Polym. Sci. Technol., 33, 95-113, 2020.
16. Pratt A.B., Weber F.E., Schmoekel H.G., Müller R., and Hubbell J.A., Synthetic Extracellular Matrices for In Situ   
Tissue Engineering, Biotechnol. Bioeng., 86, 27-36, 2004.
17. Peng J., Zhao H., Tu C., Xu Z., Ye L., Zhao L., Gu Z., Zhao D., Zhang J., and Feng Z., In Situ Hydrogel Dressing Loaded with Heparin and Basic Fibroblas Growth Factor for Accelerating Wound Healing in Rat, Mater. Sci. Eng. C, 116, 111169, 2020.
18. Guo J., Sun W., Kim J.P., Lu X., Li Q., Lin M., Mrowczynski O., Rizk E.B., Cheng J., Qian G., and Yang J., Development of Tannin-Inspired Antimicrobial Bioadhesives, Acta Biomater., 72, 35-44, 2018.
19. Xuan H., Wu S., Fei S., Li B., Yang Y., and Yuan H., Injectable Nanofber-Polysaccharide Self-healing Hydrogels for Wound Healing, Mater. Sci. Eng. C, 128, 112264, 2021.
20. Maia J., Ferreira L., Carvalho R., Ramos M.A., and Gil M.H., Synthesis and Characterization of New Injectable and 
De gradable Dextran-Based Hydrogels,  Polymer,  46, 9604-9614,  2005.
21. Qu J., Zhao X., Liang Y., Zhang T., Ma P.X., and Guo B., Antibacterial Adhesive Injectable Hydrogels with Rapid Self-healing, Extensibility and Compressibility as Wound Dressing for Joints Skin Wound Healing, Biomaterials,  183, 185-199, 
2018.
22. Moreira Teixeira L.S., Feijen J., van Blitterswijk C.A.,  Dijksra P.J., and Karperien M., Enzyme-Catalyzed Crosslinkable Hydrogels: Emerging Strategies for Tissue Engineering,   Biomaterials, 33, 1281-1290, 2012.
23. Tavakol M., Vasheghani-Farahani E., Mohammadifar M.A., Soleimani M., and Hashemi-Najafabadi S., Synthesis and 
Characterization of an In Situ Forming Hydrogel Using   Tyramine Conjugated High Methoxyl Gum Tragacanth,  J. Biomater. Appl.,  30, 1016-1025, 2016.
24. Liang Y., Zhao X., Hu T., Han Y., and Guo B., Mussel-Inspired, Antibacterial, Conductive, Antioxidant, Injectable Composite Hydrogel Wound Dressing to Promote the Regeneration of  Infected Skin, J. Coll. Interf. Sci., 556, 514-528, 2019.
25. Le Thi P., Lee Y., Tran D.L., Thi T.T.H., Kang J.I., Park K.M., and Park K.D., In Situ Forming and Reactive Oxygen Species-
Scavenging Gelatin Hydrogels for Enhancing Wound Healing Efcacy, Acta Biomater., 103, 142-152, 2020.
26. Lih E., Lee J.S., Park K., and Park K., Rapidly Curable Chitosan-PEG Hydrogels as Tissue Adhesives for Hemosasis and Wound Healing, Acta Biomater., 8, 3261-9, 2012.
27. Sakai S. and Nakahata M., Horseradish Peroxidase Cata lyzed Hydrogelation for Biomedical, Biopharmaceutical, and Bio fabrication Applications, Chem. Asian. J., 12, 3098-3109, 2017.
28. Jeon E.Y., Hwang B.H., Yang Y.J., Kim B.J., Choi B.-H., Jung G.Y., and Cha H.J., Rapidly Light-Activated Surgical Pro tein 
Glue Inspired by Mussel Adhesion and Insect Structural Crosslinking,  Biomaterials,  67, 11-19, 2015.
29. Liu C., Hua J., Ng P.F., and Fei B., Photochemisry of Bioinspired Dityrosine Crosslinking, J. Mater. Sci. Technol., 
63, 182-191, 2021.
30. Yu J., Huang T.R., Lim Z.H., Luo R., Pasula R.R., Liao L.D., Lim S., and Chen C.H., Production of Hollow Bacte rial Cel lu lose Microspheres Using Microfuidics to Form an In jectable Porous Scafold for Wound Healing, Adv. Healthc. Mater., 5, 2983-2992, 2016.