Polyurethane/natural polymer blends nanofibers for application as electrospun wound dressings

Document Type : compile

Authors

University of Isfahan

Abstract

The skin, as the first defense barrier against the entry of pathogens into the body, helps to heal the wounds through four stages including homeostasis, inflammation, proliferation, and regeneration. Today, various wound dressings have been introduced to help the body's immune system to improve the speed and quality of wound healing. Conventional wound dressings include polyurethane foams and elastomers, hydrocolloids, hydrogels, semipermeable films, alginate wound dressings, and electrospun polymer nanofibers. Wound dressings based on polymer nanofibers have received a lot of attention for reasons such as similarity to the extracellular matrix (ECM), the desired cell adhesion, high surface-to-volume ratio, gas exchange capability, nutrient supply, and fluid evaporation control. So far, the use of electrospun polyurethanes for the preparation of wound dressings has been reported in various studies. However, the results of studies on a wide range of wound dressings have shown that almost no polymer alone can heal different wounds, effectively. For this reason, many efforts have been made recently to develop polyurethane wound dressings to heal various types of wounds. In this regard, natural polymers have been used due to properties such as biological activity, biocompatibility, and biodegradability along with polyurethanes with desirable physical and mechanical properties. In this article, after introducing the the mechanism of wound healing and describing the characteristics of an ideal wound dressing, the polyurethane/natural polymer blends nanofibers for use as electrospun wound dressings will be discussed.

Keywords

Main Subjects


1. Geerligs M., Skin Layer Mechanics, Ph.D Thesis, Eindhoven University of Technology, Netherlands, 2010.
2. Moeini A., Pedram P., Makvandi P., Malinconico M., and d’Ayala G.G., Wound Healing and Antimicrobial Efect of Active Secondary Metabolites in Chitosan-Based Wound Dressings: A Review, Carbohydr. Polym., 233, 115839, 2020.
3. Alipour H., Koosha M., Sarraf Shirazi M.J., and Jebali A., Modern Commercial Wound Dressings and Introducing New 
Wound Dressings for Wound Healing: A Review, Polymeriza-tion (Persian), 6, 65-80, 2016.
4. Boateng J.S., Matthews K.H., Stevens H.N., and Eccleson G.M., Wound Healing Dressings and Drug Delivery Sysems: 
A Review, J. Pharm. Sci., 97, 2892-2923, 2008.
5. Dhivya S., Padma V.V., and Santhini E., Wound Dressings–A Review, Biomedicine (Taipei), 5, 1-5, 2015.
6. Pilehvar-Soltanahmadi Y., Akbarzadeh A., Moazzez-Lalaklo N., and  Zarghami N., An Update on Clinical Applications of 
Electrospun  Nanofbers  for  Skin  Bioengineering, Artif  Cell. Nanomed. Biotechnol.,  44, 1350-1364, 2016.
7. Miguel S.P., Figueira D.R., Simões D., Ribeiro M.P.,  Coutinho P., Ferreira P. et al., Electrospun Polymeric Nanofbres as Wound Dressings: A Review, Colloids Surf. B, 169, 60-71, 2018.
8.  Wang F., Hu S., Jia Q., and Zhang L., Advances in Electros-pinning of Natural Biomaterials for Wound Dressing, J. Nano-
mater., 201, 1-14, 2020.  
9.  Iacob A.T.,  Drăgan M.,  Ionescu O.M.,  Profre L.,  Ficai A.,   Andronescu E., et al., An Overview of Biopolymeric Electros-
pun Nanofbers Based on Polysaccharides for Wound Healing Management, Pharmaceutics, 12, 983, 2020.
10. Powell H. and Boyce S., Fiber Density of Electrospun Gela-tin Scafolds Regulates Morphogenesis of Dermal–Epidermal 
Skin  Subsitutes,  J. Biomed. Mater. Res. A.,  84, 1078-1086, 2008.
11. Zhang Y., Venugopal J., Huang Z.-M., Lim C.T., and Ramak-rishna S., Crosslinking of the Electrospun Gelatin Nanofbers, 
Polymer, 47, 2911-2917, 2006.
12. Jayakumar R., Prabaharan M., Kumar P.S., Nair S., andTamura H.,  Biomaterials  Based  on  Chitin  and  Chitosan  in Wound Dressing Applications, Biotechnol. Adv., 29, 322-337, 2011.
13. Rinaudo M., Chitin and Chitosan: Properties and Applications, Prog. Polym. Sci., 31, 603-632, 2006.
14. Collins M.N. and Birkinshaw C., Hyaluronic Acid Based Scaf-folds for Tissue Engineering—A Review, Carbohydr. Polym., 92, 1262-1279, 2013.
15. McManus M.C., Boland E.D., Simpson D.G., Barnes C.P., and Bowlin G.L., Electrospun Fibrinogen: Feasibility as a Tissue 
Engineering Scafold in a Rat Cell Culture Model, J. Biomed. Mater. Res. A, 81, 299-309, 2007.
16. Min B.-M., Lee G., Kim S.H., Nam Y.S., Lee T.S., and Park W.H., Electrospinning of Silk Fibroin Nanofbers and Its Efect on the Adhesion and Spreading of Normal Human Keratinocytes and Fibroblass In Vitro,  Biomaterials,  25, 1289-1297, 2004.
17. Memic A., Abudula T., Mohammed H.S., Joshi Navare K., Colombani T., and Bencherif S.A., Lates Progress in Electro-
spun Nanofbers for Wound Healing Applications, ACS Appl. Bio. Mater., 2, 952-969, 2019.
18. Hu J. and Tan L., Polyurethane Composites  and  Nanocom-posites for Biomedical Applications.  Polyurethane Polymers, Thomas S., Datta J., Haponiuk J., and Reghunadhan A. (Eds.), Elsevier, 477-498, 2017.
19. Khil M.S., Cha D.I., Kim H.Y., Kim I.S., and Bhattarai N., Electrospun Nanofbrous Polyurethane Membrane as Wound 
Dressing, J. Biomed. Mater. Res., 67, 675-679, 2003.
20. Dai L., Long Z., Ren X.h., Deng H.b., He H., and Liu W., Electrospun Polyvinyl Alcohol/Waterborne Polyurethane Composite Nanofbers Involving Cellulose Nanofbers, J. Appl. Polym. Sci.,  131, 1-6, 2014.
21. Tang C., Chen P., and Liu H., Cocontinuous Cellulose Acetate/Polyurethane Composite Nanofber Fabricated through   
Electrospinning, Polym. Eng. Sci., 48, 1296-1303, 2008.
22. Unnithan A.R., Gnanasekaran G., Sathishkumar Y., Lee Y.S., and Kim C.S., Electrospun Antibacterial Polyurethane– Cellulose Acetate–Zein Composite Mats for Wound Dressing,   Carbohydr. Polym., 102, 884-892, 2014.
23. Kang W.M., Cheng B.W., Li Q.X., and Zuo F.F., Novel  Antibacterial Nanofbers of Chitosan and Polyurethane Prepared by Electrospinning, Adv. Mater. Res.,  150, 1452-1456, 2011.
24. Lee S.J., Heo D.N., Moon J.H., Park H.N., Ko W.-K., Bae M.S. et al., Chitosan/Polyurethane Blended Fiber Sheets Contain-
ing Silver Sulfadiazine for Use as An Antimicrobial Wound Dressing, J. Nanosci. Nanotechnol., 14, 7488-7494, 2014.
25. Movahedi M., Asefnejad A., Rafenia M., and Khorasani M.T., Potential of Novel Electrospun Core-Shell Structured   Polyurethane/Starch (Hyaluronic Acid) Nanofbers for Skin Tissue Engineering: In Vitro and In Vivo Evaluation,  Int. J. Biol. Macromol.,  146, 627-637, 2020.
26.  Heo D.N., Yang D.H., Lee J.B., Bae M.S., Kim J.H., Moon S.H. et al., Burn-Wound Healing Efect of Gelatin/Polyure-
thane Nanofber Scafold Containing Silver-Sulfadiazine, J. Biomed. Nanotech.,  9, 511-155, 2013
27. Wang Y., Li P., Xiang P., Lu J., Yuan J., and Shen J.,   Electrospun Polyurethane/Keratin/AgNP Biocomposite Mats for Biocompatible and Antibacterial Wound Dressings, J.   Mater. Chem. B, 4, 635-648, 2016.
28. Tan L., Hu J., Huang H., Han J., and Hu H., Study of Multi-Functional Electrospun Composite Nanofbrous Mats for 
Smart Wound Healing, Int. J. Biol. Macromol., 79, 469-476, 2015.
29. Unnithan A.R., Barakat N.A., Pichiah P.T., Gnanasekaran G., Nirmala R., Cha Y.-S. et al., Wound-Dressing Materials with Antibacterial Activity from Electrospun Polyurethane– Dextran Nanofber Mats Containing Ciprofoxacin HCl,   Carbohydr. Polym., 90, 1786-1793, 2012.
30. Unnithan A.R., Sasikala A.R.K., Murugesan P., Gurusamy M., Wu D., Park C.H. et al., Electrospun Polyurethane-Dextran 
Nanofber Mats Loaded with Esradiol for Pos-Menopausal Wound Dressing, Int. J. Biol. Macromol., 77, 1-8, 2015.
31. Chen J.-P. and Chiang Y., Bioactive Electrospun Silver Nanoparticles-Containing Polyurethane Nanofbers as Wound 
Dressings, J. Nanosci. Nanotechnol.,  10, 7560-7564, 2010.
32. Misry P., Chhabra R., Muke S., Narvekar A., Sathaye S., Jain R. et al., Fabrication and Characterization of Starch-TPU 
Based Nanofbers for Wound Healing Applications,  Mater. Sci. Eng. C, 119, 11316, 2021