Janus Particles: 1- Design and Preparation

Document Type : compile

Authors

1 Department of Polymer & Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University. Tehran, Iran

2 Department of Polymer & Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, Tehran, Iran

Abstract

In Roman religion, Janus was a god known as the custodian of the universe. He was usually shown with two heads in opposite sides to look in two directions at the same time. The term "Janus" is used to describe particles that have two faces with different physical or chemical characteristics. Janus particles with adjustable asymmetric structure and unique properties have attracted the attention of researchers. This anisotropy can lead to phenomena such as self-assembly or surface activity. since 1990s, Janus particles have been subjected to significant research. In this article, powerful synthesis methods including masking, phase separation and self-assembly, which are used to prepare Janus particles with different properties and morphologies, are described. This review focuses exclusively on Janus particles that contain polymeric materials. The different classes of synthesis methods of Janus particles, including some historical contexts, have been specially described. Also, in order to help new researchers in the field of making or using these particles, recent developments in this field have been described and the pros and cons of different methods have been evaluated with a view to future directions and applications.

Keywords

Main Subjects


1.  Casagrande C. and Veyssié M., Janus Beads-Realization and 1s Observation of Interfacial properties, C. R. Acad. Sci., Ser. II, 306, 1988.
2.  Casagrande C., Fabre P., Raphaël E., and Veyssié M., Janus Beads: Realization and Behaviour at Water/Oil Interfaces, 
Europhys. Lett.,  9, 251-255, 1989.
3.  de Gennes P.G., Soft Matter, Science, 256, 495-497, 1992.
4.  Zhang Y., Huang K., Lin J., and Huang P., Janus Nanoparticles in Cancer Diagnosis, Therapy and Theranosics,  Biomater. 
Sci.,  7, 1262-1275, 2019.
5.  Cho I. and Lee K.-W., Morphology of Latex Particles Formed by Poly)methyl methacrylate)-Seeded Emulsion 
Polymerization of Styrene,  J. Appl. Polym. Sci.,  30, 1903-1926, 1985.
6.  Su H., Hurd Price C.-A., Jing L., Tian Q., Liu J., and Qian K., Janus Particles: Design, Preparation, and Biomedical 
Applications,  Mater. Today Bio,  4, 100033, 2019.
7.  Safaie N. and Ferrier R.C., Janus Nanoparticle Synthesis: Overview, Recent Developments, and Applications,  J. Appl. 
Phys.,  127, 170902, 2020.
8.  Fan X., Yang J., Loh X.J., and Li Z., Polymeric Janus Nanoparticles: Recent Advances in Synthetic Strategies, Materials Properties, and Applications,  Macromol. Rapid Commun.,  40, 1800203, 2019.
9.  Takei H. and Shimizu N., Gradient Sensitive Microscopic Probes Prepared by Gold Evaporation and Chemisorption on 
Latex Spheres,  Langmuir,  13, 1865-1868, 1997.
10. Love J.C., Gates B.D., Wolfe D.B., Paul K.E., and Whitesides G.M., Fabrication and Wetting Properties of Metallic Half-Shells with Submicron Diameters,  Nano Lett.,  2, 891-894, 2002.
11. Yake A.M., Snyder C.E., and Velegol D., Site-Specifc Functionalization on Individual Colloids: Size Control, Stability, and Multilayers,  Langmuir,  23, 9069-9075, 2007.
12. Ho C.-C., Chen W.-S., Shie T.-Y., Lin J.-N., and Kuo C., Novel Fabrication of Janus Particles from the Surfaces of Electrospun Polymer Fibers, Langmuir, 24, 5663-5666, 2008.
13. Lin C.-C., Liao C.-W., Chao Y.-C., and Kuo C., Fabrication and Characterization of Asymmetric Janus and Ternary Particles, ACS Appl. Mater. Interfaces,  2, 3185-3191, 2010.
14. McConnell M.D., Kraeutler M.J., Yang S., and Composo R.J., Patchy and Multiregion Janus Particles with Tunable Optical Properties, Nano Lett., 10, 603-609, 2010.
15. Huo F., Lytton-Jean A.K.R., and Mirkin C.A., Asymmetric Functionalization of Nanoparticles Based on Thermally 
Addressable DNA Interconnects, Adv. Mater., 18, 2304-2306, 2006.
16. Lattuada M. and Hatton T.A., Preparation and Controlled Self-Assembly of Janus Magnetic Nanoparticles,  J. Am. Chem. Soc.,  129, 12878-12889, 2007.
17. Isojima T., Lattuada M., Vander Sande J.B., and Hatton T.A., Reversible Clusering of pH- and Temperature-Responsive 
Janus Magnetic Nanoparticles,  ACS Nano,  2, 1799-1806, 2008.
18. Hong L., Jiang S., and Granick S., Simple Method to Produce Janus Colloidal Particles in Large Quantity,  Langmuir,  22, 9495-9499, 2006.
19. Qiang W., Wang Y., He P., Xu H., Gu H., and Shi D., Synthesis of Asymmetric Inorganic/Polymer Nanocomposite Particles via Localized Subsrate Surface Modifcation and Miniemulsion Polymerization, Langmuir, 24, 606-608, 2008.
20. Niu X., Ran F., Chen L., Lu G.J., Hu P., Deming C.P., Peng Y., Rojas-Andrade M.D., and Chen S., Thermoswitchable Janus 
Gold Nanoparticles with Stimuli-Responsive Hydrophilic Polymer Brushes, Langmuir,  32, 4297-4304, 2016.
21. Ekanem E.E., Zhang Z., and Vladisavljević G.T., Facile Production of Biodegradable Bipolymer Patchy and Patchy 
Janus Particles with Controlled Morphology by Microfuidic Routes,  Langmuir,  33, 8476-8482, 2017.
22. Lahann J., Recent Progress in Nano-biotechnologyCompartmentalized Micro- and Nanoparticles via Electrohydrodynamic Co-jetting, Small, 7, 1149-1156, 2011.
23. Ku K.H., Lee Y.J., Yi G., Jang S.G., Schmidt B., Liao K., Klinger D., Hawker C.J., and Kim B.J., Shape-Tunable Biphasic 
Janus Particles as pH-Responsive Switchable Surfactants, Macromolecules,  50, 9276-9285, 2017.
24. Tu F. and Lee D., Shape-Changing and Amphiphilicity-Reversing Janus Particles with ph-Responsive Surfactant Properties.,  J. Am. Chem. Soc.,  136, 9999-10006, 2014.
25. Nisisako T., Torii T., Takahashi T., and Takizawa Y., Synthesis of Monodisperse Bicolored Janus Particles with Electrical 
Anisotropy Using a Microfuidic Co-fow Sysem, Adv. Mater., 18, 1152-1156, 2006.
26. Chen C.-H., Shah R.K., Abate A.R., and Weitz D.A., Janus Particles Templated from Double Emulsion Droplets Generated Using Microfuidics,  Langmuir,  25, 4320-4323, 2009.
27. Fernández-Rodríguez M.Á., Rahmani S., Yu C., Rodríguez-Valverde M.Á., Cabrerizo-Vílchez M.Á., Michel C., Lahann J., and Hidalgo-Álvarez R., Synthesis and Interfacial Activity of PMMA/Ptbma Janus and Homogeneous Nanoparticles at Water/Oil Interfaces,  Colloid. Surface. Physicochem. Eng. Asp., 536, 259-265, 2018.
28. Goldacker T., Abetz V., Stadler R., Erukhimovich I., and Leibler L., Non-Centrosymmetric Superlattices in Block 
Copolymer Blends,  Nature,  398, 137-139, 1999.
29. Zhang W., He J., and Dong X., Controlled Fabrication of Polymeric Janus Nanoparticles and their Solution Behaviors, 
RSC Adv.,  6, 105070-105075, 2016.
30. Erhardt R., Böker A., Zettl H., Kaya H., Pyckhout-Hintzen W., Krausch G., Abetz V., and Müller A.H.E., Janus Micelles, 
Macromolecules,  34, 1069-1075, 2001.