A Brief Review of the Cocatalysts Types and their Performance in (Co)Polymerization Processes of Olefins: From Synthesis to Industrial Application

Document Type : compile

Authors

1 Jam petrochemical company

2 Research and Development Center, Jam Petrochemical Company

3 researcher

Abstract

In the past, most researchers believed that cocatalyst is a passive component that only has the task of "removing impurities" and "alkylating" the active centers of catalyst at the beginning of the polymerization and does not play a specific role in the polymerization. Today, it has been proven that this belief is incorrect, because the use of various cocatalysts leads to the induction of various properties in the final polymer, which is inconsistent with this view. Cocatalyst (negative ion) and active catalytic centers (positive ion) form "ion pairs" that govern the microstructure and arrangement of monomers in polymer chains during polymerization reaction. One of the important factors in the polymerization of ethylene α-olefin is the choice of aluminum alkyl to control the activity and properties of the polymer. In this article, the importance of the role of cocatalyst in the polymerization of Ziegler-Natta, metallocene, and hybrid catalysts, its effect on the catalyst behavior, distribution of active catalytic centers, catalyst activity and properties of polymer products such as molecular weight, molecular weight distribution, wax percentage, comonomer incorporation and physical-mechanical properties such as strength and impact resistance were reviewed. The results showed that each cocatalyst, due to its nature and chemical structure, causes alkylation of active catalytic centers and therefore produces polymers with various properties. Also, the use of a combination of different types of cocatalysts can induce different properties than each of the cocatalysts alone in the polymerization process.

Keywords

Main Subjects


1. Akram M.A., Liu X., Jiang B.,  Zhang B., Ali A.,  and Fu Z., Efect  of  Alkylaluminum  Cocatalys  on  Ethylene-1/Hexene 
Copolymerization and Active Center  Disribution of  MgCl2-Supported Ziegler-Natta Catalys,  J. Macromol. Sci. Part A, 
58, 539-549, 2021.
2. Jandaghian M.H., Maddah Y., Nikzinat E., Masoori M., Sepahi A., and Rashedi R., Invesigation of the Efect of Mg(OEt)2 
Manipulation on the Ethylene and 1-Butene Copolymerization Performance of Ziegler-Natta Catalyss,  J. Macromol. Sci. 
Part A, 58, 492-498, 2021.
3. Masoori M., Ahmadjo S., Mortazavi S.M.M., and Vakili M., Copolymerization of Ethylene α-Olefn Using MgCl2-Ethanol 
Adduct Catalyss, J. Macromol. Sci. Part A,  54, 140-144, 2017.
4.  Li P., Tu S., Xu T., Fu Z., and Fan Z., The Infuence of Combined External Donor and Combined Cocatalys on Propylene Polymerization with a MgCl2-Supported Ziegler-Natta Catalys in the Presence of Hydrogen, Appl. Polym. Sci., 132, 41689, 1-8, 2015.
5. Ko Y.S. and Woo S.I., Shape and Difusion of the Monomer-Controlled Copolymerization of Ethylene and α-Olefns over 
Cp2ZrCl2 Confned in the Nanospace of the Supercage of NaY, Polym. Sci. Polym. Chem., 41, 2171-2179, 2003.
6. Wada T., Funako T., Chammingkwan A.T., Matta A., and Terano M., Structure-Performance Relationship of Mg(OEt)2 -Based Ziegler-Natta Catalyss, Catalysis, 20, 525-532, 2020.
7. Marques M.M.V., Nunes C.P., Tait P.J.T., and Dias A.R., Polymerization of Ethylene Using a High-Activity Ziegler–
Natta Catalys. I. Kinetic Studies, Polym. Sci. Polym. Chem., 31, 209-218, 1993.
8. Garof T., Mannonen L., Marjo Väänänen V.E., and Kalle Kallio P.W., Chemical Composition Disribution Study in Ethylene/1-Hexene Copolymerization to Produce LLDPE Material Using MgCl2-TiCl4-Based Ziegler-Natta Catalyss,  J. Appl. Polym. Sci., 115, 826-836, 2010.
9. Liu B., Tian Z., Jin Y., Zhao N., and Liu B., Efect of Alkyl Aluminums on Ethylene Polymerization Reactions with a Cr-V Bimetallic Catalys, Macromol. React. Eng.,  12, 1-12, 2018.
10. Pongchan T., Praserthdam P., and Jongsomjit B., Facile Invesigation of Ti3+ State in Ti-Based Ziegler-Natta Catalys with a Combination of Cocatalyss Using Electron Spin Resonance (ESR), Bull. Chem. React. Eng. Catal., 15, 55-65, 2020.
11. Taniike T., Thang V.Q., Binh N.T., Hiraoka Y., Uozumi T., and Terano M., Initial Particle Morphology Development 
in Ziegler-Natta Propylene Polymerization Tracked with Stopped-Flow Technique, Macromol. Chem. Phys., 212, 723-729, 2011.
12. Taniike T., Tien Nguyen B., Takahashi S., Quoc Vu T., Ikeya M., and Terano M., Kinetic Elucidation of Comonomer-Induced Chemical and Physical Activation in Heterogeneous Ziegler-Natta Propylene Polymerization,  J. Polym. Sci. Part 
A: Polym. Chem.,  49, 4005-4012, 2011.
13. Taniike T., Funako T., and Terano M., Multilateral Characterization for Indusrial Ziegler-Natta Catalyss owardElucidation of Structure-Performance Relationship, J. Catal., 311, 33-40, 2014.
14. Soga K., Shiono T., and Kim H.J., Activation of SiO2-Supported Zirconocene Catalyss by Common Trialkylaluminiums, 
Makromol. Chem., 194, 3499-3504, 1993.
15. Soga K., Mori K., and Naito Y., Polymerization of Olefns with Noble Metal (Ru, Rh, Pd) Compounds Activated by Alkylaluminium or Alkyltitanium Compounds,  Makromol. Chem., 11, 285-291, 1990.
16. De Carvalho A.B., Gloor P.E., and Hamielec A.E., A Kinetic Mathematical Model for Heterogeneous Ziegler-Natta 
Copolymerization, Polymer, 30, 280-296, 1989.
17. Kissin Y.V.,  Isospecifc Polymerization of Olefns: With Heterogeneous Ziegler-Natta Catalys,  Gulf Research and Development Company Pittsburgh, USA, 4612-5084, 1985.
18. Chen Y. and Fan Z., Ethylene/1-Hexene Copolymerization with TiCl4/MgCl2/AlCl3 Catalys in the Presence of Hydrogen, Eur. Polym. J., 42, 2441-2449, 2006.
19. Yang H., Zhang L., Zang D., Fu Z., and Fan Z., Efects of Alkylaluminum as Cocatalys on the Active Center Disribution 
of 1-Hexene Polymerization with MgCl2-Supported Ziegler-Natta Catalyss, Catal. Commun., 62, 104-106, 2015.
20. Zheng W., He A., Liu C., Shao H., and Wang R., The Infuences of Alkylaluminium as Cocatalys on 1-Butene Polymerization with MgCl2-Supported TiCl4 Ziegler-Natta Catalyss, Polymer, 210, 122998, 2020.
21. Avar S., Mortazavi S.M.M., Ahmadjo S., and Zohuri G.H., α-Diimine Nickel Catalys for Copolymerization of Hexene 
and Acrylate Monomers Activated by Diferent Cocatalyss, Appl. Organomet. Chem.,  32, 1-10, 2018.
22. Niu Q., Zhang J., Peng W., Fan Z., and He A., Efect of Alkylaluminium on the Regio- and Stereoselectivity in Copolymerization of Isoprene and Butadiene Using TiCl4/MgCl2 Type Ziegler-Natta Catalys,  Mol. Catal.,  471, 1-8, 2019.
23. Senso N., Khaubunsongserm S., Jongsomjit B., and Praserthdam P., The Infuence of Mixed Activators on Ethylene Polymerization and Ethylene/1-Hexene Copolymerization with Silica-Supported Ziegler-Natta Catalys, Molecules, 15, 9323-9339, 2010.
24. Burkhard E. and Wagner H.P., Ziegler-Natta Catalys Compositions for Producing Polyethylenes with a High Molecular Weight Tail and Methods of Making the Same, US Pat.  0,130,271A1, 2011. 
25. Joachim T.M. and Pater F., Catalys Components for the Polymerization of Olefns,  US Pat.  10,155,825B2, 2018.26. Mei P.B.G., Process for the Gas-Phase Polymerization of Ethylene or Ethylene Mixtures, US Pat. 9,873,754 B2, 2018.
27. Jayaratne K., Process for Producing a Ziegler-Natta Procatalys for Ethylene Polymerization, US Pat. 10,184,016 B2, 2019.
28. Vittorias I. and Jens W., Polyethylene Composition Having Hith Mechanical Properties, US Pat. 9,458,312 B2, 2016.
29. Kam W. and Data R., Process for Making Polyethylene Copolymers with a Reversed Comonomer Disribution,  US Pat. 0,040,160 A1, 2019.