Investigation of Effective Parameters on Self-Nucleation Phenomenon in Semi-Crystalline Polymers

Document Type : compile

Authors

1 AUT

2 Jam petrochemical company

Abstract

The crystallinity of semi-crystalline polymers is affected by both nucleation and growth processes, and the nucleation phase controls the kinetics of crystallization. In general, there are two types of homogeneous and heterogeneous nucleation. Self-nucleation or memory effect is a type of homogeneous nucleation. This phenomenon occurs when the crystal nuclei of the remaining polymer due to insufficient melting temperature or melting time in the next cooling stage lead to the acceleration of nucleation. Despite many researches on self-nucleation, the exact concept and the factors affecting self-nucleation still need to be studied. In this article, after introducing the phenomenon of self-nucleation and its phenomenology, measurement and the method of determining the domains of self-nucleation are introduced. Then, the factors affecting self-nucleation such as molecular mass, topology, and the structural constraints are discussed. Molecular mass and topology affect the stability of the nuclei and the memory effect by means of constraints resulting from the polymer entanglements. The confinements in polymer/nano-particle system and block copolymers caused by reduction of chain diffusion. In these systems, tethering of the chains to the surface of the nanoparticles or the constraint implemented by the two-ended covalent bonds led to the disappearance of the self-nucleation domain (domain 2) and hampering of memory effect.

Keywords

Main Subjects


1.  Xu J., Reiter G., and Alamo R.G., Concepts of Nucleation in Polymer  Crysallization,  Crysals,  11, 1-19, 2021.
2.  Kang J., Zhengfang C., and Jinyao C., Invesigation on the Self-Nucleation Behavior of Controlled-Rheology Polypropylene, J. Macromol. Sci. Part B Phys, 54, 127-142, 2015. 
3.  Yazdi M., Haddadi Asl V., Pourmohammadi M., and Roghani-Mamaqani H., Mechanical Properties, Crysallinity, and Self-
Nucleation of Carbon Nanotube-Polyurethane Nanocomposites, Polym. Tes., 79, 1-11, 2019.
4.  Sangroniz L., Cavallo D., and Müller A.J., Self-Nucleation Efects on Polymer Crysallization,  Macromolecules,   53, 
4581-4604, 2020.
5.  Blundell D.J. and Keller A., Nature of Self-Seeding Polyethylene Crysal Nuclei, J. Macromol. Sci. Part B, 2, 301-336, 1968.
6.  Pérez R.A.,  Córdova M.E., López J.V., and Hoskins  J.N., Nucleation,  Crysallization,  Self-Nucleation  and  Thermal 
Fractionation  of  Cyclic  and  Linear  Poly(ε-caprolactone)s, React.  Funct.  Polym.,  80, 71-82, 2014.
7.  Reid B.O., Madhavi V., Mamun A., Janani H., Gao H., Hu W., and Rufna G., Strong Memory Efect of Crysallization 
above the Equilibrium Melting Point of Random Copolymers, Macromolecules, 46, 6485-6497, 2013
.8.  Sangroniz L., Cavallo D., Santamaria A., Müller A.J., and Alamo R.G., Thermorheologically Complex Self-Seeded 
Melts of Propylene-Ethylene Copolymers, Macromolecules, 50, 642-651, 2017.
9.  Luo C. and Sommer J.U., Role of Thermal Hisory and Entanglement Related Thickness Selection in Polymer 
Crysallization,  ACS  Macro  Lett.,  5,  30-34,  2015.
10. Michell R.M., Mugica A., Zubitur M., and Mu A.J., Self-Nucleation of Crysalline Phases within Homopolymers, 
Polymer Blends, Copolymers, and Nanocomposites,  Adv. Polym. Sci.,  276, 215-256, 2015.
11. Cavallo D., Gardella L., Portale G., Müller A.J., and Alfonso G.C., The Morphology and Polymorphism of Self-Nucleated 
Trigonal Isotactic Poly(1-butene) Studied by Synchrotron IR Microspectroscopy, CrysEngComm, 18, 816-828, 2016.
12. Zhang C.S., Shao H., Kong C., Wang W., Cao Y., and Liu W., Memory Efect on the Crysallization Behavior of Poly(lactic 
acid) Probed by Infrared Spectroscopy,  Eur. Polym. J.,  50, 642-651, 2017.
13. Sangroniz L., Alamo R.G.,  and Cavallo D., Diferences between Isotropic and Self-Nucleated PCL Melts Detected 
by Dielectric Experiments, Macromolecules, 51, 3663-3671, 2018.
14. Fillon B., Wittmann J.C., Lotz B., and Thierry A.,  Self-Nucleation and Recrysallization of Isotactic Polypropylene 
(Α Phase) Invesigated by Diferential Scanning Calorimetry, J. Polym. Sci. Part B: Polym. Phys.,  31, 1383-1393, 1993.
15. Michell R.M., Mugica A., Zubitur M., and Muller A.J., Self-Nucleation of Crysalline Phases within Homopolymers, 
Polymer Blends, Copolymers, and Nanocomposites,  Adv. Polym. Sci.,  276, 215-256, 2017.
16. Arnal M.L., Balsamo V., Ronca G., Snchez A., and Müller A.J., Applications of Successive Self-Nucleation and Annealing 
(SSA) to Polymer Characterization, J. Therm. Anal. Calorim., 59,  451-470, 2000.
17. Balsamo  V., Paolini Y., Ronca G., and Müller A.J., Crysallization  of the Polyethylene Block in Polysyrene-b-
Polyethylene-b-Polycaprolactone Triblock Copolymers: Self-Nucleation Behavior,  Macromol. Chem. Phys.,  201, 2711-
2720, 2000.
18. Arandia I., Agurtzane M., Zubitur M., Arantxa A., Liu G., Wang D., Rosica M., Dubois P., and Müller A.J., How Composition Determines the Properties of Isodimorphic Poly(butylene succinate-ran-butylene azelate) Random 
Biobased Copolymers: From Single to Double Crysalline Random Copolymers,  Macromolecules,  48, 43-57, 2014.
19. Fillon B., Wittmann J.C., Lotz B., and Thierry A., Self‐Nucleation and Recrysallization of Isotactic Polypropylene 
(Α Phase) Invesigated by Diferential Scanning Calorimetry, J. Polym. Sci. Part B: Polym. Phys,  31, 1383-1393, 1993. 
20. Keller A. and Willmouth  F.M., Self-Seeded Crysallization and Its Potential for Molecular Weight Characterization. I. 
Experiments on Broad Disributions, J. Polym. Sci. Part A-2: Polym. Phys.,  8, 1443-1456, 1970.
21. Lorenzo A.T., Arnal M.L., Sánchez J.J., and Müller A.J., Efect of Annealing Time on the Self-Nucleation Behavior 
of Semicrysalline Polymers,  J. Polym. Sci. Part B: Polym. Phys.,  44, 1738-1750, 2006.
22. Li C.Y., The Rise of Semicrysalline Polymers and Why are they Still Interesing, Polymer,  211, 1-13, 2020.
23. Wang M., Li J., Shi  G., Liu G., Mu A.J., and Wang D., Suppression of the Self-Nucleation Efect of Semicrysalline 
Polymers by Confnement, Macromolecules, 54, 3810-3821, 2021.
24. Arnal M.L., López-Carrasquero  F., Laredo E., and Müller A.J., Coincident or Sequential  Crysallization of PCL and 
PEO Blocks within Polysyrene-b-poly(ethylene oxide)-b-poly(ε-caprolactone) linear Triblock Copolymers, Eur. Polym. 
J., 40, 1461-1476, 2004.
25. Müller A.J.,  Balsamo V., and Arnal M.L., Nucleation and Crysallization in  Diblock and Triblock Copolymers,  Adv. 
Polym.  Sci.,  190,  1-63,  2005.
26. Bessif B., Pfohl T., and Reiter G., Self-Seeding Procedure for Obtaining Stacked Block Copolymer Lamellar Crysals in 
Solution, Polymers, 13, 1-10, 2021.
27. Trujillo M., Arnal M.L., and Mu A.J., Thermal and Morphological Characterization of Nanocomposites Prepared 
by In-Situ Polymerization of High-Density Polyethylene  on Carbon Nanotubes, Macromolecules,  40, 6268-6276, 2007.
28. Müller A.J., Arnal M.L., Trujillo M., and Lorenzo A.T., Super-Nucleation in Nanocomposites and Confnement Efects on 
the Crysallizable  Components within Block Copolymers, Miktoarm Star Copolymers and Nanocomposites, Eur. Polym. 
J., 47, 614-629, 2011.
29. Colonna S., Pérez-Camargo R.A., Chen H., Liu G., Wang D., Müller A.J., and Fina A., Supernucleation and Orientation of Poly(butylene terephthalate) Crysals in Nanocomposites Containing Highly Reduced Graphene Oxide,  Macromolecules,  50, 9380-9393, 2017.
30. Wen X., Su Y., Shui Y., Zhao W., Müller A.J., and Wang D., Correlation between Grafting Density and Confned Crysallization Behavior of Poly(ethylene glycol) Grafted to Silica,  Macromolecules,  52,  1505-1516,  2019.