Principles and Application of Fourier-Transform Rheology in the Identification of Polymer Alloys

Document Type : compile

Authors

Research and Development Center, Jam Petrochemical Company, Pars Special Economic Energy Zone, Asaluyeh, Bushehr, Iran

Abstract

Today, almost all polymer researchers use rheological methods to identify the microstructure of various polymer systems. One of the most popular and widely used methods is the small amplitude oscillatory shear (SAOS) test. SAOS provides a set of valuable information about the microstructure of polymeric materials. Various materials in this test are examined only in the linear viscoelastic region (LVR). However, polymer melts (raw, alloy, composite, etc.) are exposed to a much higher shear rate in processing methods. Therefore, the study of the non-linear behavior of polymers is of particular importance. Fourier transform rheology (FT rheology) is one of the most advanced methods for identifying the microstructure of polymers. The use of large amplitude oscillatory shear (LAOS), which leads to departure from the LVR, is the basis of the method. The stress response to this large deformation has the basic harmonies and involves higher odd harmonies that complicate the response form. In this method, the Fourier transform technique is used to convert a complex response in the time domain to a simple response in the frequency domain. The mentioned response contains valuable information about the microstructure of materials, which is impossible to extract (with this high accuracy) from the output responses in the LVR.

Keywords


1.  Reynolds C.D., Hoyle D.M., McLeish T.C.B., and Thompson R.L., Chain-Stretch Relaxation from Low-Frequency Fourier 
Transform Rheology, Phys. Rev. Res., 2, 334-357, 2020.
2.  Hirschberg V.,  Fourier Transform Rheology as a Tool to De ter mine the Fatigue Behavior of  Polymers, MSc Thesis, 
Laval University, March 2020.
3.  Van Den Berg M.E.H., Kuser S., Windhab E.J., Sagis L.M.C., and Fischer P., Non-Linear Shear and Dilatational Rheology 
of Viscoelasic Interfacial Layers of Cellulose Nanocrysals, Phys. Fluids, 30, 721-733, 2018.
4.  Klein C., Rheology and Fourier-Transform Rheology on Wa-ter-Based Sysems, Logos Verlag, Berlin, pp. 29-63, 2008.
5.  Boisly M., Käsner M., Brummund J., and Ulbricht V., Large Amplitude Oscillatory Shear of the Prandtl Element Anal ysed 
by Fourier Transform Rheology,  Appl. Rheol.,  24, 32-42, 2014.
6.  Sagis L.M.C. and Fischer P., Non-Linear Rheology of Com-plex Fluid–Fluid Interfaces, Curr. Opin. Colloid Interface Sci., 
19, 520-529, 2014.
7.  Qi X., Shan L., Liu S., Li Z., Liu G., and Tan Y., Non-Linear Rheological Characterisics of Fine Aggregate Matrix Based 
on FT-Rheology, Consr. Build. Mater., 274, 121-135, 2021.
8.  Yasin S., Hussain M., Zheng Q., and Song Y., Large Ampli-tude Oscillatory Rheology of Silica and Cellulose Nanocrys-
tals Filled Natural Rubber Compounds, J. Colloid Interface Sci., 588, 602-610, 2021.
9.  Lim H.T., Ahn K.H., Hong J.S., and Hyun K., Non-Linear Vis coelasicity of Polymer Nanocomposites Under Large 
Am plitude Oscillatory Shear Flow, J. Rheol.,  57, 767-789, 2013.
10. Mendoza A.J., Guzmán E., Martinez-Pedrero F., Ritacco H., Rubio R.G., Ortega F., Starov V.M., and Miller R., Particle 
Laden Fluid Interfaces: Dynamics and Interfacial Rheology, Adv. Colloid Interface Sci., 206, 303-319, 2014.
11. Vittorias I., Lilge D., Baroso V., and Wilhelm M., Linear and Non-Linear Rheology of Linear Polydisperse Polyethylene,Rheol. Acta, 50, 691-700, 2011.
12. Wilhelm M., Fourier-Transform Rheology, Macromol. Mater. Eng., 287, 83-105, 2002.
13. Wilhelm M., Maring D., and Spiess H.W., Fourier-Transform Rheology, Rheol. Acta, 37, 399-405, 1998.
14. Kallus S., Willenbacher N., Kirsch S., Disler D., Neidhöfer T., Wilhelm M., and Spiess H.W., Characterization of Polymer 
Dispersions by Fourier Transform Rheology, Rheol. Acta, 40, 552-559, 2001.
15. Wilhelm M., Reinheimer P., Ortseifer M., Neidhöfer T., and Spiess H.W., The Crossover Between Linear and Non-Linear 
Mechanical Behaviour in Polymer Solutions as Detected by Fourier-Transform Rheology, Rheol. Acta, 39, 241-246, 2000.
16. Hyun K., Baik E.S., Ahn K.H., Lee S.J., Sugimoto M., and Koyama K., Fourier-Transform Rheology under Me dium Am-
plitude Oscillatory Shear for Linear and Branched Poly mer Melts, J. Rheol., 51, 1319-1342, 2007.
17. Fleury G., Schlatter G., and Muller R., Non-Linear Rhe ol ogy for Long Chain Branching Characterization, Com parison of Two Methodologies: Fourier Transform Rhe ology and Re lax-ation., Rheol. Acta, 44, 174-187, 2004.
18. Debbaut B. and Burhin H., Large Amplitude Oscillatory Shear and Fourier-Transform Rheology for a High-Density Polyeth-ylene: Experiments and Numerical Simulation, J. Rhe ol., 46, 1155-1176, 2002.
19. Brader J.M., Siebenbürger M., Ballauf M., Reinheimer K., Wilhelm M., Frey S.J., Weysser F., and Fuchs M., Non- Linear 
Response of Dense Colloidal Suspensions Under Oscil lato ry Shear: Mode-Coupling Theory and Fourier Trans form 
Rhe ol ogy Experiments, Phys. Rev. E, 82, 614-621, 2010.
20. Reinheimer K., Grosso M., Hetzel F., Kübel J., and Wil helm M., Fourier Transform Rheology as an Innovative Morpho-
logical Characterization Technique for the Emulsion Volume Average Radius and Its Disribution, J. Colloid Interface Sci., 
380, 201-212, 2012.