1. Lee J.Y., An J., and Chua C.K., Fundamentals and Applications of 3 D Printing for Novel Materials, Appl. Mater. Today, 7, 120-133, 2017.
2. Valot L., Martinez J., Mehdi A., and Subra G., Chemical In sights into Bioinks for 3D Printing, Chem. Soc. Rev., 48,
4049-4086, 2019.
3. Hospodiuk M., Dey M., Sosnoski D., and Ozbolat I.T., The Bioink: A Comprehensive Review on Bioprintable Materials,
Biotechnol. Adv., 35, 217-239, 2017.
4. Tetsuka H. and Shin S.R., Materials and Technical Innovations in 3D Printing in Biomedical Applications, J. Mater. Chem. B, 8, 2930-2950, 2020.
5. Ozbolat I.T., Moncal K.K., and Gudapati H., Evaluation of Bio printer Technologies, Addit. Manuf., 13, 179-200, 2017.
6. Xu J., Zheng S., Hu X., Li L., Li W., Parungao R., and Song K., Advances in the Research of Bioinks Based on Natural
Collagen, Polysaccharide and Their Derivatives for Skin 3D Bioprinting, Polymers, 12, 1237, 2020.
7. Parak A., Pradeep P., du Toit L.C., Kumar P., Choonara Y.E., and Pillay V., Functionalizing Bioinks for 3D Bioprinting
Ap plications, Drug Discov. Today, 24, 198-205, 2019.
8. Akkineni A.R., Ahlfeld T., Lode A., and Gelinsky M., A Ver-sa tile Method for Combining Diferent Biopolymers in a
Core/Shell Fashion by 3D Plotting to Achieve Mechanically Robus Consructs, Biofabrication, 8, 045001, 2016.
9. Buwald S.J., Boere M., Dijksra P.J., Feijen J., Vermonden T., and Hennink W.E., Hydrogels in a Hisorical Perspec tive:
From Simple Networks to Smart Materials, J. Control. Re lease, 190, 254-273, 2014.
10. Koch L., Gruene M., Unger C., and Chichkov B., Laser Assis-ed Cell Printing, Curr. Pharm. Biotechnol., 14, 91-97, 2013.
11. Jian H., Wang M., Wang S., Wang A., and Bai S., 3D Bio-print ing for Cell Culture and Tissue Fabrication, Bio-Des.
Manufact., 1, 45-61, 2018.
12. Chimene D., Lennox K.K., Kaunas R.R., and Gaharwar A.K., Advanced Bioinks for 3D Printing: A Materials Science
Per spective, Ann. Biomed. Eng., 44, 2090-2102, 2016.
13. Bedell M.L., Navara A.M., Du Y., Zhang S., and Mikos A.G., Polymeric Sysems for Bioprinting, Chem. Rev., 120, 10744-
10792, 2020.
14. Guvendiren M., Molde J., Soares R.M.D., and Kohn J., De signing Biomaterials for 3D Printing, ACS Biomater. Sci.
Eng., 2, 1679-1693, 2016.
15. Zhang A.P., Qu X., Soman P., Hribar K.C., Lee J.W., and Chen S.H., Rapid Fabrication of Complex 3D Extracellular
Microenvironments by Dynamic Optical Projection Stereo-lithography, Adv. Mater., 24, 4266-4270, 2012.
16. Zhang Z., Jin Y., Yin J., Xu C., Xiong R., Chrisensen K., and Huang Y., Evaluation of Bioink Printability for Bioprinting
Applications, Appl. Phys. Rev., 5, 041304, 2018.
17. Gu Z., Fu J., Lin H., and He Y., Development of 3D Bio print ing: From Printing Methods to Biomedical Applications, Asian J. Pharm. Sci., 15, 529-557, 2019.
18. Rupp H. and Binder W.H., 3D Printing of Core–Shell Capsule Composites for Pos‐Reactive and Damage Sensing Applica-tions, Adv. Mater. Technol., 5, 2000509, 2020.
19. Whitford W.G. and Hoying J.B., A Bioink by any Other Name: Terms, Concepts and Consructions Related to 3D Bioprint-ing, Future Sci., 2, 2016.
20. Augusine R., Skin Bioprinting: A Novel Approach for Cre ating Artifcial Skin from Synthetic and Natural Building
Blocks, Prog. Biomater., 7, 77-92, 2018.
21. Shahrubudin N., Lee T.C., and Ramlan R., An Overview on 3D Printing Technology: Technological, Materials, and
Ap plications, Procedia Manuf., 35, 1286-1296, 2019.
22. Carrow J.K., Kerativitayanan P., Jaiswal M.K., Lokhande G., and Gaharwar A.K., Polymers for Bioprinting, In Essentials
of 3D Biofabrication and Translation, Academic, Chap. 13, 229-248, 2015.
23. Akhtar M.F., Hanif M., and Ranjha N.M., Methods of Syn the sis of Hydrogels: A Review, Saudi Pharm. J., 24, 554-559, 2016.
24. Gungor-Ozkerim P.S., Inci I., Zhang Y.S., Khademhosseini A., and Dokmeci M.R., Bioinks for 3D Bioprinting: An Overview, Biomater. Sci., 6, 915-946, 2018.
25. Gurkan U.A., Assal R.E., Yildiz R., and Sung Y., Engineer-ing Anisotropic Biomimetic Fibrocartilage Microenvironment
by Bioprinting Mesenchymal Stem Cells in Nanoliter Gel
Drop lets, Mol. Pharm., 11, 2151-2159, 2014.
26. Donderwinkel I., Van Hes J.C., and Cameron N.R., Bio-Inks for 3D Bioprinting: Recent Advances and Future Prospects,
Polym. Chem., 8, 4451-4471, 2017.
27. Fedorovich N.E., DeWijn J.R., Verbout A.J., Alblas J., and Dhert W.J., Three-Dimensional Fiber Deposition of Cell-
Laden, Viable, Patterned Consructs for Bone Tissue Printing, Tissue Eng., 14, 127-133, 2008.
28. Ngo T.D., Kashani A., Imbalzano G., Nguyen K.T.Q., and Hui D., Additive Manufacturing (3D Printing): A Review of
Ma terials, Methods, Applications and Challenges, Compos. B: Eng., 143, 172-196, 2018.
29. Mota C., Camarero-Espinosa S., Baker M.B., Wieringa P., and Moroni L., Bioprinting: From Tissue and Organ Development to In Vitro Models, Chem. Rev., 120, 10547-10607, 2020.
30. Tan E.Y., Suntornnond R., and Yeong W.Y., High-Resolution Novel Indirect Bioprinting of Low-Viscosity Cell-Laden Hy-
drogels via Model-Support Bioink Interaction, 3D Print Addit. Manuf., 8, 69-78. 2021.
31. Hu T., Cui X., Zhu M., Wu M., Tian Y., Yao B., and Fu X., 3D-Printable Supramolecular Hydrogels with Shear-Thin ning
Property: Fabricating Strength Tunable Bioink via Dual Crosslinking, Bioact. Mater., 5, 808-818, 2020.
32. Hoch E., Hirth T., Tovar G.E., and Borchers K., Chemi cal Tai loring of Gelatin to Adjus Its Chemical and Physical
Prop erties for Functional Bioprinting, J. Mater. Chem. B, 1, 5675-5685, 2013.
33. Aldana A.A., Valente F., Dilley R., and Doyle B., Develop ment of 3D Bioprinted Gelma-Alginate Hydrogels with Tunable
Mechanical Properties, Bioprinting, 21, e00105, 2021.
34. Shin J.Y., Yeo Y.H., Jeong J.E., Park S.A., and Park W.H., Du al- Crosslinked Methylcellulose Hydrogels for 3D Bio print-
ing Applications, Carbohyd. Polym., 238, 116192, 2020