Machine Learning Applications in Organic Solar Cells

Document Type : compile

Authors

1 IPPI

2 ATU

Abstract

Today, the growing need for energy due to the development of human societies is inevitable. Given the limited energy resources of the planet as well as the environmental pollution caused by the consumption of fossil fuels, the use of solar energy as a clean energy is an undeniable necessity. The use of photovoltaic converters, i.e. solar cells, is one of the efective solutions for the optimal use of this huge source of energy. So far, several sudies have been conducted on the design, manufacture and optimization of solar cells. One of the mos invaluable approaches is machine learning methods. Machine learning is considered as a new branch of academic science that provides valuable new information by processing exising data. Areas of application of machine learning in the design and manufacture of polymer solar cells are divided into three general categories: predicting the solar cells efciency, selecting appropriate materials, and optimizing the manufacturing process. In this article, we have tried to briefy introduce the machine learning methods and then explain their applications in the feld of designing and manufacturing solar cells. Due to several research activities, this article is limited to peer-reviewed articles in the years 2019 and 2020. 

Keywords

Main Subjects


1.  Zhang X.D., Machine Learning, in a Matrix Algebra Ap pro ach to Artifcial Intelligence, Springer, USA, 223-440, 2020.
2.  Roscher R., Bohn B., Duarte M.F., and Garcke J., Explain-able Machine Learning for Scientifc Insights and Discoveries, 
IEEE Access, 8, 42200-42216, 2020.
3.  Shmueli G., Data Mining for Business Analytics: Concepts, Techniques, and Applications in R, John Wiley & Sons, USA, 
2017.
4.  Molnar C.,  Interpretable Machine Learning, LeanPub, Cana da, 1-302, 2020.
5.  Xiong H., Cheng Y., Zhao W., and Liu J., Analyzing Scientifc Research Topics in Manufacturing Field Using a Topic Model, Comput. Ind. Eng., 135, 333-347, 2019.
6.  Sohrabi B., Vanani I.R., and Jalali S.M.J., Evaluation of Re search Trends in Knowledge Management: A Hybrid 
Anal ysis Through Burs Detection and Text Clusering,  J. In form. Knowl. Manag., 18, 19-43, 2019.
7.  Fiser D., Mun J.C., Jagrič V., and Jagrič T., Deep Learn ing for Stock Market Trading: A Superior Trading Strategy, Neu ral. 
Netw. World., 29, 151-171, 2019.
8.  Wong K.H., Mason C.W., and Devaraj S., Low Tempera ture Aqueous Electrodeposited TiOx Thin Films as Electron 
Ex traction Layer for Efcient Inverted Organic Solar Cells, ACS. Appl. Mater. Inter., 6, 2679-2685, 2014.
9.  Huang Y., Zhang J., Jiang E.S., and Oya Y., Structure– Prop erty Correlation Study for Organic Photovoltaic Polymer 
Ma terials Using Data Science Approach,  J. Phys. Chem. C, 124, 12871–12882, 2020.
10. Yuan J., Zhang Y., Zhou L., Zhang G., Yip H.L., and Lau T.K., Single-Junction Organic Solar Cell With Over 15% Efciency 
Using Fused-Ring Acceptor with Electron-Defcient Core, Joule, 3, 1140-1151, 2019.
11. Cui Y., Yao H., Hong L., Zhang T., Xu Y., and Xian K., Achieving Over 15% Efciency in Organic Photovoltaic Cells 
Via Copolymer Design, Adv. Mater., 31, 18-36, 2019.
12. Gao K., Jo S., Shi X ., Nian L., Zhang  M., and Kan Y., Over 12% Efciency Nonfullerene All-Small-Molecule Organic 
Solar Cells with Sequentially Evolved Multilength Scale Mor phologies, Adv. Mater., 31, 18-28, 2019.
13. Zhou Z., Xu S., Song J., Jin Y., Yue Q., Qian Y., and Liu F., High-Efciency Small-Molecule Ternary Solar Cells with a 
Hierarchical Morphology Enabled by Synergizing Fuller ene and Non-Fullerene Acceptors,  Nature Energ.,  3, 952-959, 
2018.
14. Fan B., Du X., Liu  F., Zhong  W., Ying  L., Xie R., and Tang  X., Fine-Tuning of the Chemical Structure of Photoactive 
Materials for Highly Efcient Organic Photovoltaics, Nature En erg., 3, 1051-1058, 2018.
15. Liu J., Chen S., Qian D., Gautam B., Yang G., and Zhao J., Fas Charge Separation in a Non-Fullerene Organic Solar Cell 
with a Small Driving Force, Nature Energ., 1, 1-7, 2016.
16. Bin H., Gao L., Zhang Z.G., Yang Y., and Zhang Y., 11.4% Ef ciency Non-Fullerene Polymer Solar Cells with 
Tri al kyls ilyl Subsituted 2D-Conjugated Polymer as Donor, Nat. Com mun., 20, 1-11, 2019.
17. Wadsworth A., Moser M., Marks A., and Little M.S., Critical Review of the Molecular Design Progress in Non-Fullerene 
Electron Acceptors Towards Commercially Viable Organic Solar Cells, Chem. Soc. Rev., 48, 1596-1625, 2019.
18. Graetzel M., Janssen R.A.J., Mitzi D.B., and Sargent E.H., Materials Interface Engineering for Solution-Processed 
Pho tovoltaics, Nature, 488, 304-312, 2012.
19. Zhang G., Zhao J., Chow P.C.Y., Jiang K., and Zhang J., Non fullerene Acceptor Molecules for Bulk Heterojunction 
Organic Solar Cells, Chem. Rev., 118, 3447-3507, 2018.
20. Li Y., Molecular Design of Photovoltaic Materials for Poly mer Solar Cells: Toward Suitable Electronic Energy Levels and 
Broad Absorption, Accounts. Chem. Res., 45,  723-733, 2012.
21. Cheng P., Li G., Zhan X., and Yang Y., Next-Generation Or ganic Photovoltaics Based on Non-Fullerene Acceptors, 
Nat. Photonics., 12, 131-142, 2018.
22. Lee M.H., Robus Random Fores Based Non-Fullerene Or ganic Solar Cells Efciency Prediction, Organ. Electron., 
76, 131-142, 2020.
23. Wu Y., Guo J., Sun R., and Min J., Machine Learning for Ac celerating the Discovery of High-Performance Donor/
Ac ceptor Pairs in Non-Fullerene Organic Solar Cells,  npj Comput. Mater., 6, 1-8, 2020.
24. Lee M.H., Insights from Machine Learning Techniques for Predicting the Efciency of Fullerene Derivatives-Based 
Ter nary Organic Solar Cells at Ternary Blend Design, ADV Energ. Mater., 9, 1-10, 2019.
25. Lin Y.C., Lu Y.J., Tsao C.S., Saeki  A., and Li J.X., Enhancing Photovoltaic Performance by Tuning the Domain Sizes of a 
Small-Molecule Acceptor by Side-Chain-Engineered Polymer Donors, J. Mater. Chem. A, 7, 3072-3082, 2019.
26. David T.W., Anizelli H., Jacobsson T.J., Gray C., and Teahan W., Enhancing the Stability of Organic Photovoltaics Through Machine Learning, Nano Energ., 78, 10-25, 2020.
27. Köntges W., Perkhun P., and Kammerer J., Visualiz ing Mor phological Principles for Efcient Photocurrent 
Gen era tion in Organic Non-Fullerene Acceptor Blends,En erg. Environ. Sci., 13, 1259-1268, 2020.
28. Antono E., Matsuzawa N.N., Ling J., and Saal J.E., Machine-Learning Guided Quantum Chemical and Molecular Dynam ics Calculations to Design Novel Hole-Conducting Organic Ma terials, J. Phys. Chem. A, 124, 8330-8340, 2020.
29. Padula D., Simpson  J.D., and Troisi A., Combining Electronic and Structural Features in Machine Learning Models to Pre dict Organic Solar Cells Properties, Mater. Horizons., 6, 343-349, 2019