Personalized Drug Delivery with the Use of Modern 3D Printing Technology

Document Type : compile

Author

Abstract

One of the important goals of the pharmaceutical indusry is to increase the therapeutic efectiveness of drugs for  patients and reduce their side efects. In order to fulfll these targets, the drugs should be prescribed to each patient individually and in accordance with the patient's genetic information, because in each patient, the amount of drug absorption, the time that drug reaches the target tissue and the efect of drug on the patient's organ are diferent. This clearly shows the importance of personalized medicine. Medication in personalized medicine leads to patient comfort and adaptation. The production of personalized drugs with 3D printing technology has been possible, which has  received a lot of attention in recent years. Using this technology, it is possible to design and made drugs with diferent shapes and color for children and load some drugs in one dosage (polypill) for elderly people. Also, using this  technology, the drug release pattern can be adjused by changing the thickness or type of polymer layer. The drug  release profle can be designed in such a way that each drug in polypill has special release pattern. In this article, after explaining the importance of personalized drug delivery, some encapsulated drugs in polymeric carriers are discussed. Then, some new drug delivery sysems, such as wound dressings and microsyringes produced with this technology in recent years, are briefy reviewed.

Keywords

Main Subjects


1.  Mashak A., Ghaee A., and Mobedi H., Application of 3D Print ing Technology in Novel Drug Delivery Sysems: A 
Re view, Polymerization (Persian), 8, 45-56, 2018.
2.  Pere C.P.P., Economidou S.N., Lall G., Ziraud C., Boateng J.S., Alexander B.D., Lamprou D.A. et al., 3D Printed 
Mi croneedles for Insulin Skin Delivery, Int. J. Pharmaceut., 544, 425-432, 2018.
3.  Afsana J., Vineet J., Nafs H., and Keerti J., 3D Printing in Personalized Drug Delivery, Curr. Pharm. Design, 24, 5062-
5071, 2019.
4.  Korte C. and Quodbach J., 3D-Printed Network Struc tures as Controlled-Release Drug Delivery Sysems: Dose Ad jus ment, API Release Analysis and Prediction, AAPS Pharm. Sci. Tech., 19, 3333-3342, 2018.
5.  Preis M. and Öblom H., 3D-Printed Drugs for Children—Are We Ready Yet?, AAPS Pharm. Sci. Tech., 18, 303-308, 2017.
6.  Genina N., Boetker J.P., and Rantanen J., 3D Printing in Oral Drug Delivery, in Nanotechnology for Oral Drug Delivery, 
El sevier, USA, 359-386, 2020.
7.  Lamichhane S., Bashyal S., Keum T., Noh G., Seo J.E., Bas tola R., Choi J. et al., Complex Formulations, Simple 
Techniques: Can 3D Printing Technology be the Midas Touch in Pharmaceutical Indusry?, Asian J. Pharm. Sci.,  14, 465-
479, 2019.
8.  Mishra V., Chanda P., Tambuwala M.M., and Suttee A., Per sonalized Medicine: An Overview, Int. J. Pharm. Quality 
Assur., 10, 290-294, 2019.
9.  Tiwari G., Tiwari R., Bannerjee S., Bhati L., Pandey S., Pan dey P., and Sriwasawa B., Drug Delivery Sysems: An 
Updated Review, Int. J. Pharm. Inves., 2, 2-11, 2012.
10. Falagan-Lotsch P., Grzincic E.M., and Murphy C.J., New Ad vances in Nanotechnology-Based Diagnosis and 
Thera peu tics for Breas Cancer: An Assessment of Active-Targeting Inorganic Nanoplatforms, Bioconjugate. Chem., 28, 
135-152, 2017.
11. Konta A., García-Piña M., and Serrano D., Personalised 3D Printed Medicines: Which Techniques and Polymers are More Successful?, Bioengineering, 4, 79-95, 2017.
12. Biopolymers: Opportunities and Challenges for 3D Printing, Biopolymers and their Indusrial Applications, Pradhan R., 
Rahman S., Qureshi A., and Ullah A. (Eds.), Elsevier, USA, 281-303, 2021.
13. Mazzanti V., Malagutti L., and Mollica F., FDM 3D Printing of Polymers Containing Natural Fillers: A Review of their 
Me chanical Properties, Polymers-Basel, 11, 1094-1116, 2019.
14. Wasi S., Triggs E., Farag R., Auad M., Adhikari S., Bajwa D., Li M. et al., Infuence of Plasicizers on Thermal and 
Mechan ical Properties of Biocomposite Filaments Made from Lignin and Polylactic Acid for 3D Printing, Compos. Part B: 
Eng., 205, 108483-108509, 2021.
15. Wei C., Solanki N.G., Vasoya J.M., Shah A.V., and Serajuddin A.T., Development of 3D Printed Tablets by Fused Deposition Modeling Using Polyvinyl Alcohol as Polymeric Matrix for Rapid Drug Release, J. Pharm. Sci., 109, 1558-1572, 2020.
16. Isreb A., Baj K., Wojsz M., Isreb M., Peak M., and Alhnan M.A., 3D Printed Oral Theophylline Doses with Innovative 
‘Radiator-Like’ Design: Impact of Polyethylene Oxide (PEO) Molecular Weight, Int. J. Pharm., 564, 98-105, 2019.
17. Salaoru I., Zhou Z., Morris P., and Gibbons G.J., Inkjet Print ing of Polyvinyl Alcohol Multilayers for Additive Manufacturing Applications, J. Appl. Polym. Sci., 133, 43572-43581, 2016.
18. Serra T., Mateos-Timoneda M.A., Planell J.A., and Navarro M., 3D Printed PLA-Based Scafolds: A Versatile Tool in 
Re generative Medicine, Organogenesis, 9, 239-244, 2013.
19. Farto-Vaamonde X., Auriemma G., Aquino R.P., Concheiro A., and Alvarez-Lorenzo C., Pos-Manufacture Loading of 
Filaments and 3D Printed PLA Scafolds with Prednisolone and Dexamethasone for Tissue Regeneration Applications, 
Eur. J. Pharm. Biopharm., 141, 100-110, 2019.
20. Jamróz W., Kurek M., Czech A., Szafraniec J., Gawlak K., and Jachowicz R., 3D Printing of Tablets Containing Amor phous Aripiprazole by Filaments Co-extrusion,  Eur. J. Pharm. Bio pharm., 131, 44-47, 2018.
21. Goyanes A., Det-Amornrat U., Wang J., Basit A.W., and Gais ford S., 3D Scanning and 3D Printing as Innovative 
Tech nologies for Fabricating Personalized Topical Drug De livery Sysems, J. Control. Release., 234, 41-48, 2016.
22. Elomaa L., Teixeira S., Hakala R., Korhonen H., GrijpmD.W., and Seppälä J.V., Preparation of Poly(ε-caprolactone)-Based Tissue Engineering Scafolds by Stereolithography, Acta. Biomater., 7, 3850-3856, 2011.
23. Viidik L., Vesala J., Laitinen R., Korhonen O., Ketolainen J., Aru väli J., Kirsimäe K. et al., Preparation and Characteriza tion of Hot-Melt Extruded Polycaprolactone-Based Filaments In tend ed for 3D-Printing of Tablets, Eur. J. Pharm. Sci., 158, 
105619-105649, 2021.
24. Ruiz-Palomero C., Soriano M.L., and Valcárcel M., Nano-cellulose as Analyte and Analytical Tool: Opportunities and 
Challenges, Trac-Trend Anal. Chem., 87, 1-18, 2017.
25. Cheng Y., Qin H., Acevedo N.C., Jiang X., and Shi X., 3D Printing of Extended-Release Tablets of Theophylline Using 
Hydroxypropyl Methylcellulose (HPMC) Hydrogels,  Int. J. Pharm., 591, 119983-119994, 2020.
26. Beck R.C.R., Chaves P.S., Goyanes A., Vukosavljevic B., Buanz A., Windbergs M., Basit A.W. et al., 3D Printed 
Tab lets Loaded with Polymeric Nanocapsules: An Innovative Ap pro ach to Produce Cusomized Drug Delivery Sysems, 
Int. J. Pharm., 528, 268-279, 2017.
27. Tagami T., Ito E., Kida R., Hirose K., Noda T., and Ozeki T., 3D Printing of Gummy Drug Formulations Composed of 
Gel atin and an HPMC-Based Hydrogel for Pediatric Use, Int. J. Pharm., 594, 120118-120155, 2021.
28. Pisone S., Goycoolea F.M., Young A., Smisad G., and Hiorth M., Formulation of Polysaccharide-Based Nanoparticles for Local Adminisration into the Oral Cavity, Eur. J. Pharm. Sci., 96, 381-389, 2017.
29. Okwuosa T.C., Stefaniak D., Arafat B., Isreb A., Wan K.-W., and Alhnan M.A., A Lower Temperature FDM 3D Printing 
for the Manufacture of Patient-Specifc Immediate Release Tab lets, Pharm. Res., 33, 2704-2712, 2016.
30. Goyanes A., Fina F., Martorana A., Sedough D., Gaisford S., and Basit A.W., Development of Modifed Release 3D Print ed Tablets (Printlets) with Pharmaceutical Excipients Using Ad ditive Manufacturing, Int. J. Pharm., 527, 21-30, 2017.
31. Shrawani L., Jun-Bom P., Dong Hwan S., and Sangkil L., Cus tomized Novel Design of 3D Printed Pregabalin Tablets 
for Intra-Gasric Floating and Controlled Release Using Fused Deposition Modeling, Pharmaceutics, 11, 564-578, 2019.
32. Muwafak Z., Goyanes A., Clark V., Basit A.W., Hilton S.T., and Gaisford S., Patient-Specifc 3D Scanned and 3D Print ed 
Antimicrobial Polycaprolactone Wound Dressings,  Int. J. Pharm., 527, 161-170, 2017.
33. Zhu W., Holmes B., Glazer R.I.,  and Zhang L.G., 3D Printed Nanocomposite Matrix for the Study of Breas Cancer Bone 
Metasasis, Nanomed-Nanotechnol., 12, 69-79, 2016.
34. Shin-ichiro K., Taichi I., Yasunori I., Shigeru I., and Hiromu K., Fabrication of Zero-Order Susained-Release Floating 
Tablets via Fused Depositing Modeling 3D Printer,  Chem. Pharm. Bull., 67, 992-999, 2019.
35. Gioumouxouzis C.I., Baklavaridis A., Katsamenis O.L., Mar kopoulou C.K., Bouropoulos N., Tzetzis D., and 
Fa tou ros D.G., A 3D Printed Bilayer Oral Solid Dosage form Com bin ing Metformin for Prolonged and Glimepiride for 
Im mediate Drug Delivery,  Eur. J. Pharm. Sci.,  120, 40-52, 2018.
36. Genina N., Holländer J., Jukarainen H., Mäkilä E., Salonen J.,  and Sandler N., Ethylene Vinyl Acetate (EVA) as a New Drug Carrier for 3D Printed Medical Drug Delivery Devices, Eur. J. Pharm. Sci., 90, 53-63, 2016.
37. Gioumouxouzis C.I., Tzimtzimis E., Katsamenis O.L., Dourou A., Markopoulou C., Bouropoulos N., Tzetzis D. et al., 
Fab ri cation of an Osmotic 3D Printed Solid Dosage form for Controlled Release of Active Pharmaceutical Ingredients, Eur. J. Pharm. Sci., 143, 105176-105327, 2020.
38. Khaled S.A., Alexander M.R., Wildman R.D., Wallace M.J., Sharpe S., Yoo J., and Roberts C.J., 3D Extrusion Printing of 
High Drug Loading Immediate Release Paracetamol Tablets, Int. J. Pharm., 538, 223-230, 2018.
39. Khaled S.A., Burley J.C., Alexander M.R., Yang J., and Rob erts C.J., 3D Printing of Five-in-One Dose Combina tion 
Polypill with Defned Immediate and Susained Release Pro fles, J. Control Release, 217, 308-314, 2015.
40. Ilhan E., Cesur S., Guler E., Topal F., Albayrak D., Guncu M.M., Cam M. et al., Development of Satureja Cuneifolia-Loaded So dium Alginate/Polyethylene Glycol Scafolds Produced by 3D-Printing Technology as a Diabetic Wound Dressing Mate rial, Int. J. Biol. Macromol., 161, 1040-1054, 2020.
41. Chinga-Carrasco G., Ehman N.V., Filgueira D., Johansson J., Vallejos M.E., Felissia F.E., Håkansson J. et al., Bagasse—
A Major Agro-Indusrial Residue as Potential Resource for Nanocellulose Inks for 3D Printing of Wound Dressing 
De vic es, Addit. Manuf., 28, 267-274, 2019.
42. Long J., Etxeberria A.E., Nand A.V., Bunt C.R., Ray S., and Seyfoddin A., A 3D Printed Chitosan-Pectin Hydrogel Wound 
Dressing for Lidocaine Hydrochloride Delivery, Mater. Sci. Eng., 104, 109873-109882, 2019.
43. Goodchild L., Could Dissolvable Microneedles Replace In jected Vaccines?, Mater Today, 18, 419-420, 2015.
44. Shewale J.J. and Bhole K.S., 3D Polymer Microneedle Ar ray: Fabrication and Analysis,  International Conference 
on Na scent Technologies in the Engineering Field (ICNTE), In dia,1-6, 2015. 
45. Lim S.H., Kathuria H., Amir M.H.B., Zhang X., Duong H.T.T., Ho PC-L., and Kang L., High Resolution Photopolymer for 
3D Printing of Personalised Microneedle for Transdermal De livery of Anti-Wrinkle Small Peptide, J. Control Release, 329, 907-918, 2021.
46. Wang J., Ye Y., Yu J., Kahkoska A.R., Zhang X., Wang C., Sun W. et al., Core–Shell Microneedle Gel for Self-Regulated 
Insulin Delivery, ACS Nano, 12, 2466-2473, 2018.
47. Economidou S.N., Pere C.P.P., Reid A., Uddin M.J., Windmill J.F., Lamprou D.A., and Douroumis D., 3D Printed Micronee-
dle Patches Using Stereolithography (SLA) for Intradermal Insulin Delivery, Mater. Sci. Eng., 102, 743-755, 2019.