1. Abderezzak B., Introduction to Hydrogen Technology, Introduction to Transfer Phenomena in PEM Fuel Cell,
Elsevier, USA, 1-51, 2018.
2. Wang Y., Chen K.S., Mishler J., Cho S.C., and Adroher X.C., A Review of Polymer Electrolyte Membrane Fuel Cells:
Technology, Applications, and Needs on Fundamental Research, Appl. Energy, 88, 981-1007, 2011.
3. Kreuer K.D., Fuel Cells, Springer, New York, Chapter 1, 2013.
4. Breeze P., Fuel Cells, Academic, Chapter 3, 23-32, 2017.
5. Das D., Microbial Fuel Cell, Springer, Chapter 2, 21-41, 2018.
6. Wang Y., Ruiz Diaz D.F., Chen K.S., Wang Z., and Adroher X.C., Materials, Technological Status, and Fundamentals of
PEM Fuel Cells-A Review, Mater. Today, 32, 178-203, 2019.
7. Zhang J., Zhang H., Wu J., and Zhang J., PEM Fuel Cell Testing and Diagnosis, Book Aid International, Chapter 1, 1-42, 2013.
8. Xing L., Shi W., Su H., Xu Q., Das P.K., Mao B., and Scott K., Membrane Electrode Assemblies for PEM Fuel Cells:
A Review of Functional Graded Design and Optimization, Energy, 177, 445-464, 2019.
9. Matulic N., Radica G., Barbir F., and Nizetic S., Commercial Vehicle Auxiliary Loads Powered by PEM Fuel Cell, Int. J.
Hydrog. Energy, 44, 10082-10090, 2019.
10. Wei S., Sun W., Zhang W., Su H., Leung P., Xing L., Xu L. et al., Improving Cell Performance and Alleviating
Performance Degradation by Constructing a Novel Structure of Membrane Electrode Assembly (MEA) of Dmfcs, Int. J.
Hydrog. Energy, 44, 32231-32239, 2019.
11. Sudhakar Y.N., Selvakumar M., Biopolymer Electrolytes Fundamentals and Applications in Energy Storage, Elsevier,
151-166, 2018.
12. Mohan S.V., Varjani S., and Pandey A., Microbial Electrochemical T echnology, E lsevier, 143-194, 2019.
13. Kilner J.A. and Skinner S.J., Functional Materials for Sustainable Energy Applications, Woodhead, 312-369, 2012.
14. Liu C., Wang X., Xu J., Wang C., Chen H., Liu W., Chen Z. et al., PEMs with High Proton Conductivity and Excellent
Methanol Resistance Based on Sulfonated Poly (aryl ether ketone sulfone) Containing Comb-Shaped Structures for
DMFCs Applications, Int. J. Hydrog. Energy, 45, 945-957, 2020.
15. Yu H., Hebling C., and Revathi S., Fuel Cells: Microsystems, Reference Module in Materials Science and Materials
Engineering, Elsevier, 1-13, 2016.
16. Hussain C.M., Handbook of Nanomaterials for Industrial Applications Micro and Nano Technologies, Elsevier, 757-
761, 2018.
17. Winie T., Arof A.K., and Thomas S., Polymer Electrolytes Characterization Techniques and Energy Applications, Wiley-
VCH, USA, 2020.
18. Sequeira C. and Santos D., Polymer Electrolytes Fundamentals and Applications, Woodhead, Chapter 8, 314-337, 2010.
19. Smitha B., Sridhar S., and Khan A.A., Solid Polymer Electrolyte Membranes for Fuel Cell Applications-A Review,
J. Membr. Sci., 259, 10-26, 2005.
20. Gao H. and Lian K., Proton-Conducting Polymer Electrolytes and Their Applications in Solid Supercapacitors: A Review,RSC Adv., 4, 33091-33113, 2014.
21. Peighambardoust S.J., Rowshanzamir S., and Amjadi M., Review of the Proton Exchange Membranes for Fuel Cell Applications, Hydrog. Energy, 35, 9349-9384, 2010.
22. Paradesi D., Gandhimathi S., Krishnan H., and Jeyalakshmi R., A Novel Proton Conducting Polymer Electrolyte Membrane
for Fuel Cell Applications, High Perform. Polym., 30, 116-125, 2017.
23. Rikukawa M. and Sanui K., Proton-Conducting Polymer Electrolyte Membranes Based on Hydrocarbon Polymers, Prog.
Polym. Sci., 25, 1463-1502, 2000.
24. Kariduraganavar M.Y., Nagarale R.K., Kittur A.A., and Kulkarni S.S., Ion-Exchange Membranes Preparative Methods for
Electrodialysis and Fuel Cell Applications, Desalination, 197, 225-246, 2006.
25. Vasiliev V. and Smirnov V.A., Electric Charge Accumulation and Storage in Nafion and Graphene Oxide Films, Chem. Phys. Lett., 726, 99-103, 2019.
26. Shukla A.K., Pitchumani S., Sridhar P., and Shukla A.K., Nafion and Modified-Nafion Membranes for Polymer Electrolyte Fuel Cells: An Overview, Bull. Mater. Sci., 32, 285-294, 2009.
27. Teixeira F.C., Sá A., Teixeira A.P.S., and Rangel C.M., Nafion Phosphonic Acid Composite Membranes for Proton Exchange Membranes Fuel Cells, Appl. Surf. Sci., 487, 889-897, 2019.
28. Haseli Y., Maximum Conversion Efficiency of Hydrogen Fuel Cells, Int. J. Hydrog. Energy, 43, 9015-9021, 2018.
29. Chevalier S., Olivier J.C., Josset C., and Auvity B., Polymer Electrolyte Membrane Fuel Cell Operating in Stoichiometric
Regime, J. Power Sour., 440, 227100, 2019. doi: 10.1016/j. jpowsour.2019.227100
30. Kumar S.S. and Himabindu V., Hydrogen Production by PEM Water Electrolysis-A Review, Mater. Sci. Energy Technol., 2,
442-454, 2019.