1. Patil S.K.R., Heltzel J., and Lund C.R.F., Comparison of Struc tural Features of Humins Formed Catalytically from
Glucose, Fructose, and 5‑Hydroxymethylfurfuraldehyde, En ergy Fuels, 26, 5281-5293, 2012.
2. Zandvoort I.V., Towards the Valorization of Humin By- prod ucts: Characterization, Solubilization and Catalysis,
PhD Thesis, Utrecht University, March 2015.
3. Mulder G.J., Untersuchungen über die Humussubstanzen, J. Prakt. Chem., 21, 203-240, 1840.
4. Hayes D.J., Ross J.M., Hayes H.B., and Fitzpatrick S.W., In Biorefineries-Industrial Processes and Products, Kamm B.,
Gruber P.R., and Kamm M. (Eds.), John Wiley and Sons, New York, 139-164, 2006.
5. Kuster B.F.M. and van der Baan H.S., The Influence of the Initial and Catalyst Concentrations on the Dehydration of
D- fructose, Carbohydr. Res., 54, 165-176, 1977.
6. Weingarten R., Cho J., Xing R., Conner W.C., and Huber G.W., Kinetics and Reaction Engineering of Levulinic Acid
Production from Aqueous Glucose Solutions, ChemSusChem, 5, 1280-1290, 2012.
7. Yang G., Pidko E.A., and Hensen E.J.M., Mechanism of Brøn sted Acid-catalyzed Conversion of Carbohydrates, J.
Catal., 295, 122-132, 2012.
8. Hoang T.M.C., Lefferts L., and Seshan K., Valorization of Hu min Based Byproducts from Biomass Processing-A Route
to Sustainable Hydrogen, ChemSusChem, 6, 1651-1658, 2013.
9. Kang S., Zhang G., Yang Q., Tu J., Gua X., Qin F.G.F., and Xu Y., A New Technology for Utilization of Biomass Hydrolysis
Residual Humins for Acetic Acid Production, BioResources, 11, 9496-9505, 2016.
10. Kang S., Lin X., Jiang S., Peng Z., Lu Y., Guo J., Li J., and Zeng W., Valorization of Humins by Phosphoric Acid Ac tiva tion
for Activated Carbon Production, Biomass Con vers. Biorefin., 8, 889-897, 2018.
11. Agarwal S., van Es D., and Heeres H.J., Catalytic Pyrolysis of Recalcitrant, Insoluble Humin Byproducts from C6-Sugar
Biorefineries, J. Anal. Appl. Pyrolysis, 123, 134-143, 2017.
12. van Zandvoort I., Wang Y., Rasrendra C.B., van Eck E.R.H., Bruijnincx P.C.A., Heeres H.J., and Weckhuysen B.M.,
For mation, Molecular Structure, and Morphology of Hu mins in Biomass Conversion: Influence of Feedstock and Pro cess ing
Conditions, ChemSusChem, 6, 1745-1758, 2013.
13. Sumerskii I.V., Krutov S.M., and Zarubin M.Ya., Humin like Substances Formed Under the Conditions of Industrial
Hydro lysis of Wood, Russ. J. Appl. Chem., 83, 320-327, 2010.
14. Patil S.K.R. and Lund C.R.F., Formation and Growth of Hu mins via Aldol Addition and Condensation during Acid
Catalyzed Conversion of 5-Hydroxymethylfurfural, Energy Fuels, 25, 4745-4755, 2011.
15. Cheng Z., Everhart J., Tsilomelekis G., Nikolakis V., Saha B., and Vlachos D., Structural Analysis of Humins Formed in
the Brønsted Acid Catalyzed Dehydration of Fructose, Green Chem., 20, 997-1006, 2018.
16. Zandvoort I., van Koers E.J., Weingarth M., BruijnincxP.C.A., Baldus M., and Weckhuysen B.M., Structural Char acteri za tion of 13C-Enriched Humins and Alkali-Treated 13C Humins by 2D Solid-State NMR, Green Chem., 17, 4383-
4392, 2015.
17. Filiciotto L., Structural Insights and Valorization of Humins: A Catalytic Approach, PhD Thesis, University of Cordoba,
September 2019.
18. Hoang T.M.C., van Eck E.R.H., Gardeniers J.G.E., Lefferts L., and Seshan K., Humin Based By-products from Biomass
Processing as a Potential Carbonaceous Source for Synthesis Gas Production, Green Chem., 17, 959-972, 2015.
19. Constant S., Lancefield C.S., Weckhuysen B.M., and Bruijnincx P.C.A., Quantification and Classification of
Car bonyls in Industrial Humins and Lignins by 19F NMR, ACS Sustain. Chem. Eng., 5, 965-972, 2017.
20. Pin J.M., Guigo N., Mija A., Vincent L., Sbirrazzuoli N., and van der Waal J.C., Valorization of Biorefinery Side- Stream
Products: Combination of Humins with Polyfurfuryl Alco hol for Composite Elaboration, ACS Sustain. Chem.
Eng., 2, 2182-2190, 2014.
21. Mija A., van der Waal J.C., Pin J.M., Guigo N., and de Jong E., Humins as Promising Material for Producing Sustain able
Car bohydrate-derived Building Materials, Constr. Build. Ma ter., 139, 594-601, 2017.
22. Sangregorioa A., Guigob N., van der Waala J.C., and Sb ir raz zuolib N., All ‘Green’ Composites Comprising Flax
Fibres and Humins' Resins, Compos. Sci. Technol., 171, 70- 77, 2019.
23. Cantarutti C., Dinu R., and Mija A., Biorefinery By- prod ucts and Epoxy Biorenewable Monomers: A Structural Elu ci da tion of Humins and Triglycidyl Ether of Phloroglu cinol Cross link ing, Biomacromolecules, 21, 517-533, 2020.
24. Dinu R. and Mija A., Cross-linked Polyfuran Networks with Elastomeric Behaviour Based on Humin Biorefinery
By- prod ucts, Green Chem., 21, 6277-6289, 2019.
25. Boquillon N., Use of an Epoxidized Oil-based Resin as Matrix in Vegetable Fibers-Reinforced Composites, J. Appl. Polym.
Sci., 101, 4037-4043, 2006.
26. Licsandru E. and Mija A., From Biorefinery by-Product to Bioresins. Thermosets Based on Humins and Epoxidized
Lin seed Oil, Cellul. Chem. Technol., 53, 963-969, 2019.
27. Tosi P., van Klink G.P.M., Celzard A., Fierro V., Vincent L., Jong E.D., and Mija A., Auto-Crosslinked Rigid Foams
De rived from Biorefinery Byproducts, ChemSusChem, 11, 2797-2809, 2018.
28. Shimin K., Jinxia F., Gang Z., Wentao Z., Huibin Y., and Yongjun X., Synthesis of Humin-Phenol-Formaldehyde
Ad hesive, Polymers, 9, 373-382, 2017.