Fabrication Methods of Surface-Supported Metal–Organic Framework Thin Films

Document Type : compile

Authors

1 Department of Chemistry, Alzahra University, Vanak, Tehran, Iran

2 faculty of physics & chemistry,alzahra university,tehran,iran

Abstract

Surface-supported metal–organic framework (MOF) or porous coordination polymer thin films have attracted much attention as a novel form of nanotechnology. New deposition techniques that enable the control of the film thickness, homogeneity, morphology, and dimensions with a huge number of metal–organic framework compounds offer tremendous opportunities in a variety application fields. In response to growing demands for environmental sustainability and cleaner energy, in recent years, many efforts have been made to develop metal–organic framework thin films for applications such as photovoltaics, CO2 reduction, energy storage, water splitting, and electronic devices, as well as for the fabrication of membranes. Although existing applications are promising and encouraging, MOF thin films still face several challenges, including the need to better understand the growth mechanism of thin-film, the stability of internal and external interfaces, strategies for doping and models for charge carrier transfer. Although these films show very attractive and interesting features, there is still a long way to go before these compounds can be industrialized and commercialized. This paper reviews recent advances in thin films of metal-organic frameworks, including fabrication patterning strategies.

Keywords


1. Yaghi O.M., Reticular Chemistry-Construction, Properties and Precision Reactions of Frameworks, J. Am. Chem. Soc.,
138, 15507–15509, 2016.
2. Kitagawa S., Kitaura R., and Noro S., Functional Porous Coordination Polymers, Angew. Chem. Int. Ed., 43, 2334–
2375, 2004.
3. Wilmer C.E., Leaf M., Lee C.Y., Farha O.K., Hauser B.G., Hupp J.T., and Snurr R.Q., Large-Scale Screening of
Hypothetical Metal-organic Frameworks, Nature Chem., 4, 83–89, 2012.
4. Moghadam P.Z., Li A., Wiggin S.B., Tao A., Maloney A.G.P., Wood P.A., Ward S.C., and Jimenez F.D., Development of
a Cambridge Structural Database Subset: A Collection of Metal–organic Frameworks for Past, Present, and Future,
Chem. Mater., 29, 2678–2625, 2017.
5. Wilmer C.E. and Snurr R.Q., Large-Scale Generation and Screening of Hypothetical Metal–organic Frameworks for
Applications in Gas Storage and Separations, Prediction and Calculation of Crystal Structures, Top. Curr. Chem., 345, 257–
289, 2014.
6. Falcaro P., Ricco R., Doherty C.M., Liang K., Hill A.J., and Styles M.J., MOF Positioning Technology and DeviceFab ri cation, Chem. Soc. Rev., 43, 5513–5560, 2014.
7. Stavila V., Talin A.A., and Allendorf M.D., MOF-based Electronic and Optoelectronic Devices, Chem. Soc. Rev., 43,
5994–6010, 2014.
8. Otsubo K. and Kitagawa H., Metal–Organic Frame work Thin Films with Well-Controlled Growth Directions
Con firmed by X- ray Study, APL Mater., 2, 124105, 2014. doi: 10.1063/1.4899295
9. Chernikova V., Shekhah O., and Eddaoudi M., Advanced Fabrication Method for the Preparation of MOF Thin Films,
Liquid-Phase Epitaxy Approach Meets Spin Coating Method, ACS Appl. Mater. Interfaces., 8, 20459–20464, 2016.
10. Liu J. and Wöll C., Surface-Supported Met al -Or gan ic Frame work Thin Films :iFabrication Meth ods ,iAp pli ca tion ,iand
Challenges,iChem. Soc. Rev., 46, 5730-5770, 2017.
11. Shekhah O., Wang H., Kowarik S., Schreiber F., Paulus M., Tolan M., et al., Step-by-Step Route for the Synthesis of
Metal-organic Frameworks ,iJ .iAm .iChem .iSoc., 129, 15118– 15119, 2007.
12. Biemmi E., Scherb C., and Bein T., Oriented Growth of the Metal-Organic Framework Cu3(BTC)2(H2O)3·xH2O Tun able
with Functionalized Self-Assembled Monolayers, J. Am. Chem. Soc., 129, 8054–8055, 2007.
13. Liu J.X., Shekhah O., Stammer X., Arslan H.K., Liu B., Sch upbach B., et al., Deposition of Metal–Organic
Frame works by Liquid-Phase Epitaxy, The Influence of Substrate Func tion al Group Density on Film Orientation,
Materi als, 5, 1581–1592, 2012.
14. Ameloot R., Vermoortele F., Vanhove W., Roeffaers M.B.J., Sels B.F., and De Vos D.E., Interfacial Synthesis of Hollow
Metal–Organic Framework Capsules Demonstrating Selective Permeability, Nat. Chem., 3, 382–387, 2011.
15. Brown A.J., Brunelli N.A., Eum K., Rashidi F., Johnson J.R., Koros W.J., et al., Interfacial Microfluidic Processing
of Met al–Organic Framework Hollow Fiber Membranes, Science, 345, 72–75, 2014.
16. Lu H.Y. and Zhu S.P., Interfacial Synthesis of Free Standing Metal–Organic Framework Membranes, Eur. J. Inorg. Chem.,
2013, 1294–1300, 2013.
17. Makiura R. and Konovalov O., Interfacial Growth of Large Area Single-Layer Metal–Organic Framework Nanosheets,
Sci .iRep., 3, 2506–2514, 2013.
18. Li W., Metal–Organic Framework Membranes: Production, Modification and Applications, Prog .iMater. Sci .,i100, i21–
63, 2019.
19. Makiura R., Motoyama S., Umemura Y., Yamanaka H., Sakata O., and Kitagawa H., Surface Nano-architecture of a
Met al– Organic Framework, Nat. Mater., 9, 565–571, 2010.
20. Zhao Y.B., Kornienko N., Liu Z., Zhu C.H., Asahina S., Kuo T.R., et al., Mesoscopic Constructs of Ordered and Oriented
Metal–Organic Frameworks on Plasmonic Silver Nanocrystals, J. Am. Chem. Soc., 137, 2199–2202, 2015
21. Reboul J., Furukawa S., Horike N., Tsotsalas M., Hirai K., Uehara H., et al., Mesoscopic Architectures of Porous
Coordination Polymers Fabricated by Pseudomorphic Rep li cation, Nat. Mater., 11, 717–723, 2012.
22. Li W.J., Liu J., Sun Z.H., Liu T.F., Lu J., Gao S.Y., et al., Integration of Metal–Organic Frameworks into
an Elec tro chemical Dielectric Thin Film for Electronic Applications, Nat. Commun., 7, 11830–11838, 2016.
23. He G., Dakhchoune M., Zhao J., Huang S., and Agrawal K.V.,iElectrophoretic Nuclei Assembly for Crys tal liza tion
of High-Performance Membranes on Unmodified Sup ports ,iAdv .iFunct .iMater., 28, 1707427, 2018. doi:
10.1002/adfm.201707427
24. Li M.Y. and Dincă M., Selective Formation of Biphasic Thin Films of Metal–Organic Frameworks by Potential-Controlled
Cathodic Electrodeposition, Chem. Sci., 5, 107–111, 2014.
25. Kung C.W., Mondloch J.E., Wang T.C., Bury W., Hoffeditz W., Klahr B.M., et al., Metal–Organic Framework Thin Films
as Platforms for Atomic Layer Deposition of Cobalt Ions to Enable Electrocatalytic Water Oxidation, ACS Appl. Mater.
Interfaces, 7, 28223–28230, 2015.
26. Melgar V.M.A., Kwon H.T., and Kim J., Direct Spraying Approach for Synthesis of ZIF-7 Membranes by Electrospray
Deposition, J. Membr. Sci., 459, 190–196, 2014.
27. Fan L.L., Xue M., Kang Z.X., Li H., and Qiu S.L., Electrospinning Technology Applied in Zeolitic Imidazolate
Framework Membrane Synthesis, J. Mater. Chem., 22, 25272– 25276, 2012.
28. Chen Y.F., Li S.Q., Pei X.K., Zhou J.W., Feng X., Zhang S.H., et al., A Solvent-Free Hot-Pressing Method for Preparing
Metal-Organic Framework Coatings ,iAngew .iChem .iInt .iEd .,
i55, 3419– i3423, 2016.
29. Stassin T.,iRodríguez-Hermida S., Schrode B., John Cruz A., Carraro F., Kravchenko D ., et al., Vapour-phase Deposition
of Oriented Copper Dicarboxylate Metal-Organic Framework Thin Films, Chem. Commun., 55, 10056–10059 ,i2019.
30. George S.M., Atomic Layer Deposition: An Overview, Chem. Rev., 110, 111–131, 2010.