Chemical Recycling of Polyethylene Terephthalate: A Review

Document Type : compile

Authors

1 ippi

2 کارشناس پژوهشی

Abstract

A great amount of polyethylene terephthalate-based disposable products and their
discharge in nature as waste plastics create serious environmental concerns. The
mechanical recycling of these materials to some polyester-based products accounts only
a small fraction of the waste materials. As a suitable alternative, the chemical recycling
provides methods to remove PET from environment, produces high-value-added materials,
by returning them to the production process in accordance with the principles of sustainable
development of ecosystems, and creates job and research opportunities. Several chemical
recycling methods such as alcoholysis, aminolysis, glycolysis have been explored and
numerous research works have been carried out to find suitable degradable materials,
produce applicable materials, find ecofriendly catalysts under economically operating
conditions. Despite a remarkable number of research attempts on different methods in
chemical recycling studies, there are still a few industrial or even semi-industrial chemical
recovery plants and very little information available on them. This current article briefly
reviews the different chemical recycling methods applied in PET recycling production, the
relative importance and economical issues of each method, materials and products, and the
operational conditions.

Keywords

Main Subjects


1. Gomes T.S., Visconte L.L.Y., and Pacheco E.B.A.V., Life Cycle Assessment of Polyethylene Terephthalate Packaging: An Overview, J. Polym. Environ., 27, 533–548, 2019.
2. https://www.statista.com/statistics/650191/global-polyethylene- terephthalate-production-outlook/
3. Rahimi A. and Garcia J.M., Chemical Recycling of Waste Plastics for New Materials Production, Nat. Rev. Chem., 1, 0046, 2017. doi: 10.1038/s41570-017-0046
4. https://www.farsnews.com/news/1389/6/3
5. Taniguchi I., Yoshida S., Hiraga K., Miyamoto K., Kimura Y., and Oda K., Biodegradation of PET: Current Status and Application Aspects, ACS Catal., 9, 4089−4105, 2019.
6. Bartolome L., Imran M., Cho B.G., Al-Masry W.A., and Kim D.H., Recent Developments in the Chemical Recycling of PET, Material Recycling Trends and Perspectives; Achilias,
D. (Ed), InTech Open, Rijeka, Croatia, Chap. 2, 65−84, 2012.
7. Goje A.S., Thakur S.A., Diware V.R., Chauhan Y.P., and Mishra S., Chemical Recycling, Kinetics, and Thermodynamics of Hydrolysis of Poly(Ethylene Terephthalate) Waste with
Nonaqueous Potassium Hydroxide Solution, Polym. Plast. Technol. Eng, 43, 369–388, 2004.
8. Das J., Halgeri A.B., Sahu V., and Parikh P.A., Alkaline Hydrolysis of Poly Ethylene Terephthalate in Presence of Phase Transfer Catalyst, Indian J. Chem. Technol., 14, 173-177,
2007.
9. Mancini S.D. and ZaninM., Post Consumer Pet Depolymerization by Acid Hydrolysis, Polym. Plast. Technol. Eng., 46, 135–144, 2007.
10. Li X.K., Lu H., Guo W., Cao G., Liu H., and Shi Y.H., Reaction Kinetics and Mechanism of Catalyzed Hydrolysis of Waste PET Using Solid Acid Catalyst in Supercritical CO2,
AIChE J., 61, 200-2014, 2015.
11. Singh S., Sharma S., Umar A., Mehta S.K., Bhatti M., and Kansal S.K., Recycling of Waste Poly(ethylene terephthalate) Bottles by Alkaline Hydrolysis and Recovery of Pure Nanospindle-
Shaped Terephthalic Acid, J. Nanosci. Nanotechnol., 18, 5804-5809, 2018.
12. Hosseini S.S., Taheri S., Zadhoush A., and Mehrabani-Zeinabad A., Hydrolytic Degradation of Poly(ethylene terephthalate), J. Appl. Polym. Sci., 103, 2304–2309, 2007.
13. Jain A. and Soni R.K., Spectroscopic Investigation of End Products Obtained by Ammonolysis of Poly (Ethylene Terephthalate) Waste in the Presence of Zinc Acetate As A Catalyst, J. Polym. Res., 14, 475–481, 2007.
14. Blackmon K.P., Fox D.W., and Shafer S.J., Process for Converting PET Scrap to Diamine Monomers, US Pat. 4,973,746, 1990.
15. Fukushima K., Lecuyer J.M., Wei D.S., Horn H.W., Jones G.O., Al-Megren H.A., Alabdulrahman A.M., et al., Advanced Chemical Recycling of Poly(Ethylene Terephthalate) Through Organocatalytic Aminolysis, Polym. Chem., 4, 1610-1616, 2013.
16. Mir Mohamad Sadeghi G., Shamsi R., and Sayaf M., From Aminolysis Product of PET Waste to Novel Biodegradable Polyurethanes, J. Polym. Environ., 19, 522–534, 2011.
17. Hoang C.N. and Dang Y.H., Aminolysis of Poly(Ethylene Terephthalate) Waste with Ethylenediamine and Characterization of Diamine Products, Polym. Degrad. Stab., 98, 697-708,
2013. 18. Yang Y., Lu Y., Xiang H., Xu Y., and Li Y., Study on Methanolytic
Depolymerization of PET with Supercritical Methanol for Chemical Recycling, Polym. Degrad. Stab., 75, 185-191, 2002.
19. Kurokawa H., Ohshima M., Sugiyama K., and Miura H., Methanolysis of Polyethylene Terephthalate (PET) in the Presence of Aluminium Tiisopropoxide Catalyst to form Dimethyl
Terephthalate and Ethylene Glycol, Polym. Degrad. Stab., 79, 529-533, 2003.
20. Langer A., Waskiewicz S., Lenartowicz-Klik M., and Krzysztof B., Application of Waste Poly(Ethylene Terephthalate) in the Synthesis of New Oligomeric Plasticizers, Polym. Degrad.
Stab., 119, 105-112, 2015.
21. Ding J., Chen J., Ji Y., Ni P., Li Z., and Xing L., Kinetics of Alcoholysis of Poly(Ethylene Terephthalate) in Sub- and Super- Critical Isooctyl Alcohol to Produce Dioctyl Terephthalate, J. Anal. Appl. Pyrolysis, 106, 99–103, 2014.
22. Scremin D.M., Miyazaki D.Y., Lunelli C.E., Silva S.A., and Zawadzki S.F., PET Recycling by Alcoholysis Using A New Heterogeneous Catalyst: Study and Its Use in Polyurethane
Adhesives Preparation, Macromol. Symp., 383, 1800027, 2019. doi: 10.1002/masy.201800027
23. Chen F., Zhou Q., Bu R., Yang F., and Li W., Kinetics of Poly(ethylene terephthalate) Fiber Glycolysis in Ethylene Glycol, Fibers Polym.,16, 1213-1219, 2015.
24. Sangalang A., Bartolome L., and Kim D.H., Generalized Kinetic Analysis of Heterogeneous PET Glycolysis: Nucleation- Controlled Depolymerization, Polym. Degrad. Stab., 115, 45-
53, 2015.
25. Sharma V., Shrivastava P., and Agarwal D.D., Degradation of PET-Bottles to Monohydroxyethyl Terephthalate (MHT) Using Ethylene Glycol and Hydrotalcite, J. Polym. Res., 22, 241, 2015. doi: 10.1007/s10965-015-0884-2
26. Duque-Ingunza I., Lopez-Fonseca R., de Rivas B., and Gutierrez- Ortiz J.I., Process Optimization for Catalytic Glycolysis of Post-Consumer PET Wastes, J. Chem. Technol. Biotechnol., 89, 97–103, 2014.
27. Viana M.E., Riul A., Carvalho G.M., Rubira A.F., and Muniz E.C., Chemical Recycling of PET  by Catalyzed Glycolysis:Kinetics of the Heterogeneous Reaction, Chem. Eng. J., 173, 210-219, 2011.
28. Suh D.J., Park O.O., Yoon K.H., The Properties of Unsaturated Polyester Based on the Glycolyzed Poly(Ethylene Terephthalate) with Various Glycol Compositions, Polymer, 41,
461–466, 2000.
29. Dullius J., Ruecker C., Oliveira V., Ligabue R., and Einloft S., Chemical Recycling of Post-Consumer PET: Alkyd Resins Synthesis, Prog. Org. Coat., 57, 123–127, 2006.
30. Guclu G., Alkyd Resins Based on waste PET for Water-Reducible Coating Applications, Polym. Bull., 64, 739–748, 2010.
31. Atta A.M., El-Kafrawyb A.F., Aly M.H., and Abdel-Azim A.A., New Epoxy Resins Based on Recycled Poly(Ethylene Terephthalate) As Organic Coatings, Prog. Org. Coat., 58,
13–22, 2007.