Fabrication of Composites and Nanocomposites Based on Polymer by Friction Stir Process: A Review

Document Type : compile

Authors

1 Department of mechanic, Tabriz university, Tabriz

2 Iran Polymer and Petrochemical Institute

Abstract

Due to the low weight and chemical resistance of polymers, compared to metals,
the use of these materials in various industries has increased. On the other hand,
due to the low strength in polymers, their reinforcement with micron/nanoparticles is
necessary. In recent years, one of the advances in plastics and composite industries has
been the development and commodification of polymer-based nanocomposites. The use of
polymer blend nanocomposites based on thermoplastic polyolefin have been developed in
engineering application such as automotive, airplane, household appliances and medical
apparatus. There are different processes such as extruder and internal mixer to fabricate
nanocomposites. The limitation of these processes is the high cost, the multi-stage process
for sheet production and the amount of nano-sized reinforcement particles (at most 5 wt%).
Recently, investigations have been done on friction stir processing for the fabrication of
composites and nanocomposites. To produce polymer composites and nanocomposites with
friction stir process, a groove with defined dimensions is machined in the base polymer
sheet and nanoparticles are improvised into this groove. Subsequently, a rotating tool is
plunged into the sheet and traversed along the groove to disperse particles to the base
material.

Keywords

Main Subjects


1. Jiri G., Handbook of Thermoplastic Elastomer, William Andrew, New York, 184-200, 2007.
2. Nakhaei M., Arab N.M., and Naderi G., Application of Response Surface Methodology for Weld Strength Prediction in Laser Welding of Polypropylene/Clay Nanocomposite, Iran. Polym. J., 22, 351-360, 2013.
3. Nakhaei M., Arab N.M., Naderi G., and Gollo M.H., Experimental Study on Optimization of CO2 Laser Welding Parameters for Polypropylene-clay Nanocomposite Welds, J. Mech.
Sci. Technol., 27, 843-848, 2013.
4. Tarawneh M.A., Yu L., Tarawni M.A., Ahmad S.H., Al- Banawi O., and Batiha M.A., High Performance Thermoplastic Elastomer (TPE) Nanocomposite Based on Graphene Nanoplates (GNPs), World J. Eng., 12, 437-442, 2015.
5. Mehrabzadeh M. and Delfan N., Thermoplastic Elastomers of Butadiene-Acrylonitrile Copolymer and Polyamide. VI. Dynamic Crosslinking by Different Systems, J. Appl. Polym.
Sci., 77, 2057-2066, 2000.
6. Duleba B., Spišák E., and Greškovič F., Mechanical Properties of PA6/MMT Polymer Nanocomposites and Prediction Based on Content of Nanofiller, Procedia Eng., 96, 75-80, 2014.
7. Bhattacharya M., Polymer Nanocomposites-A Comparison Between Carbon Nanotubes, Graphene, and Clay as Nanofillers, Materials, 9, 262-268, 2016.
8. Marić M. and Macosko C.W., Improving Polymer Blend Dispersion in Mini-Mixers, Polym. Eng. Sci., 41,118-130, 2001.
9. Rosato D.V., Rosato D.V., and Rosato M., Plastic Product Material and Process Selection Handbook, Elsevier, 1st ed., UK, 121-145, 2004.
10. Spontak R.J. and Patel N.P., Thermoplastic Elastomers: Fun-damentals and Applications, Curr. Opin. Colloid Interface Sci., 5, 333-340, 2000.
11. Koo J.H., Polymer Nanocomposites, McGraw-Hill Education, 1st ed., New York, 79-122, 2006.
12. Paul D. and Robeson L.M., Polymer Nanotechnology: Nanocomposites, Polymer, 49, 204-231, 2008.
13. Kim H., Abdala A.A., and Macosko C.W., Graphene/Polymer Nanocomposites, Macromolecules, 43, 6515-6530, 2010.
14. Cho J. and Paul D., Nylon 6 Nanocomposites by Melt Compounding, Polymer, 42, 1083-1094, 2001.
15. Sanchez-Solis A., Garcia-Rejon A., and Manero O., Production of Nanocomposites of PET-Montmorillonite Clay by An Extrusion Process, Macromol. Symp., 192, 281-292, 2003.
16. Naderi G., Khosrokhavar R., Shokoohi S., Bakhshandeh G.R., and Ghoreishy M.H.R., Dynamically Vulcanized Polypropylene/ Ethylene-Propylene Diene Monomer/Organoclay Nanocomposites: Effect of Mixing Sequence on Structural, Rheological, and Mechanical Properties, J. Vinyl Add. Tech., 22, 320-325, 2016.
17. Zou W., Chen R-y., Wu C., and Qu J-p., Influence of Process Parameters on Property of PP/EPDM Blends Prepared by A Novel Vane Extruder, J. Polym. Eng., 36, 899-908, 2016.
18. Rosato D.V., Rosato D.V., and Rosato M.G., Injection Molding Handbook, Springer Science and Business Media, 3rd ed., USA, 28-139, 2012.
19. Haghnegahdar M., Naderi G., and Ghoreishy M.H.R., Fracture Toughness and Deformation Mechanism of un-Vulcanized and Dynamically Vulcanized Polypropylene/Ethylene
Propylene Diene Monomer/Graphene Nanocomposites, Compos. Sci. Technol., 141, 83-98, 2017.
20. Manisegaran L.V., Ahmad N.A., Nazri N., Noor A.S.M., Ramachandran V., and Ismail M.T., Optimizing Friction Stir Weld Parameters of Aluminum and Copper Using Conventional
Milling Machine, AIP Conf. Proc.: AIP Publishing, 1958, 214-221, 2018. doi: 10.1063/1.5034544
21. Nakhaei M.R., Mostafapour A., Dubois C., Naderi G., and Ghoreishy M.H.R., Study of Morphology and Mechanical Properties of PP/EPDM/Clay Nanocomposites Prepared Using
Twin-Screw Extruder and Friction Stir Process, Polym. Compos., 2018. doi: 10.1002/pc.25188
22. Mostafapour A., Naderi G., and Nakhaei M.R., Effect of Process Parameters on Fracture Toughness of PP/EPDM/Nanoclay Nanocomposite Fabricated by Novel Method of Heat
Assisted Friction Stir Processing, Polym. Compos., 39, 2336- 2346, 2018.
23. Shishavan S.M., Azdast T., Aghdam K.M., Hasanzadeh R., Moradian M., and Daryadel M., Effect of Different Nanoparticles and Friction Stir Process Parameters on Surface Hardness
and Morphology of Acrylonitrile Butadiene Styrene, Int. J. Eng. Trans A, 31, 1117-1122, 2018.
24. Nakhaei M., Naderi G., and Mostafapour A., Effect of Processing Parameters on Morphology and Tensile Properties of PP/EPDM/Organoclay Nanocomposites Fabricated by Friction
Stir Processing, Iran. Polym. J., 25,179-191, 2016.
25. Derazkola H.A. and Simchi A., Effects of Alumina Nanoparticles on The Microstructure, Strength and Wear Resistance of Poly(methyl methacrylate)-Based Nanocomposites Prepared
by Friction Stir Processing, J. Mech. Behav. Biomed. Mater., 79, 246-253, 2018.
26. Nakhaei M.R., Mostafapour A., and Naderi G. Optimization of Mechanical Properties of PP/EPDM/Clay Nanocomposite Fabricated by Friction Stir Processing with Response Surface
Methodology and Neural Networks, Polym. Compos., 38, 421-432, 2017.
27. Mostafapour A., Naderi G., and Nakhaei M.R., Theoretical Models for Prediction of Mechanical Behaviour of the PP/ EPDM Nanocomposites Fabricated by Friction Stir Process,
Polyolefins J., 4, 99-109, 2016.
28. Barmouz M., Seyfi J., Givi M .K.B., Hejazi I., and Davachi S.M., A Novel Approach for Producing Polymer Nanocomposites by In-Situ Dispersion of Clay Particles Via Friction
Stir Processing, Mater. Sci. Eng. A, 528, 3003-3006, 2011.
29. Alyali S., Mostafapour A., and Azarsa E., Fabrication of PP/ Al2O3 Surface Nanocomposite via Novel Friction Stir Processing Approach, Int. J. Adv. Sci. Eng. Technol., 3, 598-608, 2012.
30. Azarsa E. and Mostafapour A., On the Feasibility of Producing Polymer–Metal Composites via Novel Variant of Friction Stir Processing, J. Manuf. Processes, 15, 682-688, 2013.