Polymer Crystallization in the Presence of Carbon Nanofillers

Document Type : compile

Authors

1 Isfahan University of Technology

2 Academic member

Abstract

Carbonaceous nanofillers, i.e., fullerene, carbon nanofiber, carbon nanotube, and graphene have emerged as a new class of functional nanomaterials world-wide due to their exceptional electrical, thermal, optical, and mechanical properties. One of the most promising applications of LDCNs is in polymer nanocomposites; these materials endow the polymer matrix with significant physical reinforcement and/or multi-functional capabilities. The relations between properties, structure and morphology of polymers in the nanocomposites offer an effective pathway to obtain novel and desired properties through structural manipulation, wherein the interfacial crystallization and the crystalline structure with the matrix are critical factors. By now, extensive studies have reported that LDCNs are highly effective nucleating agents that can significantly accelerate their crystallization kinetics and/or induce unique crystalline morphologies in nanocomposites. In this paper, a general overview of current sources for polymer induced crystallization in the presence of two-dimensional LDCN in isotactic polypropylene (ipp) and polyethylene is provided by a detail account of the LDCN two-dimensional and derivative, the crystallization kinetics LDCNs with/without flow fields, crystalline modification and interpolar crystalline morphology, the origin of polymer crystal presence in LDCNs on the basis of molecular simulations and experimental practices.

Keywords

Main Subjects


1. Soldano C., Mahmood A., and Dujardin E., Production, Properties and Potential of Graphene, Carbon, 48, 2127-2150, 2010.
2.Stankovich S., Dikin D.A., Dommett G.H.B., Kohlhaas K.M., Zimney E.J., Stach E.A., Piner R.D., Nguyen S.T., and Ruoff R.S., Graphene-based Composite Materials, Nature, 442, 282-286, 2006.
3.Sun Y.Q. and Shi G.Q., Graphene/Polymer Composites for Energy Applications, J. Polym. Sci. Part B: Polym. Phys., 51, 231-253, 2013.
4.Yuan G.D., Zhang W.J., Yang Y., Tang Y.B., Li Y.Q., Wang J.X., Meng X.M., He Z.B., Wu C.M.L., Bello I., Lee C.S., and Lee S.T., Graphene Sheets via Microwave Chemical Vapor Deposition, Chem. Phys. Lett., 467, 361-364, 2009.
5.Suner S., Joffe R., Tipper J.L., and Emami N., Ultra High Molecular Weight Polyethylene/Graphene Oxide Nanocomposites,Composites Part B., 78, 185-191, 2015.
6.Abdou J.P., Reynolds K.J., Pfau M.R., van Staden J., Braggin G.A., Tajaddod N., Minus M., Reguero V., Vilatela J.J., and Zhang S., Interfacial Crystallization of Isotactic Polypropylene Surrounding Macroscopic Carbon Nanotube and Graphene
Fibers, Polymer, 91, 136-145, 2016.
7.Assouline E., Lustiger A., Barber A.H., Cooper C.A., Klein E., Wachtel E., and Wagner H.D., Nucleation Ability of Multiwall Carbon Nanotubes in Polypropylene Composites, J. Polym. Sci., Part B: Polym. Phys., 41, 520-527, 2003.
8.Xu J.Z., Liang Y.Y., Huang H.D., Zhong G.J., Lei J., Chen C., and Li Z.M., Isothermal and Nonisothermal Crystallization of Isotactic Polypropylene/Graphene Oxide Nanosheet Nanocomposites, J. Polym. Res., 19, 9975-9981, 2012.
9.Li D., Muller M.B., Gilje S., Kaner R.B., and Wallace G.G., Processable Eaqueous Dispersions of Graphene Nanosheets, Nat. Nanotechnol., 3, 101-105, 2008.
10. Chen J., Schneider K., Kretzschmar B., and Heinrich G., Nucleation and Growth Behavior of B-nucleated iPP During Shear Induced Crystallization Investigated by In-situ Synchrotron WAXS and SAXS, Polymer, 55, 5477-5487, 2014.
11.Lee S.H., Kim M.S., and Ogale A.A., Crystallization Behavior of Carbon Nanofiber/Linear Low Density Polyethylene Nanocomposites, J. Appl. Polym. Sci., 106, 2605-2614, 2007.
12.Miltner H.E., Grossiord N., Lu K.B., Loos J., Koning C.E., and Van Mele B., Isotactic Polypropylene/Carbon Nanotube Composites Prepared by Latex Technology. Thermal Analysis of Carbon Nanotube-Induced Nucleation, Macromolecules, 41, 5753-5762, 2008.
13.Lu K.B., Grossiord N., Koning C.E., Miltner H.E., Van Mele B., and Loos J., Carbon Nanotube/Isotactic Polypropylene Composites Prepared by Latex Technology: Morphology Analysis of CNT-Induced Nucleation, Macromolecules, 41, 8081-8085, 2008.
14.Cong Y.H., Hong Z.H., Qi Z.M., Zhou W.M., Li H.L., Liu H., Chen W., Wang X., and Li L.B., Conformational Ordering in Growing Spherulites of Isotactic Polypropylene, Macromolecules, 43, 9859-9864, 2010.
15.Farrukh S.h., Selvin P., Mamdouh A., and Harthi A.L., Non-Isothermal Crystallization Kinetics of High Density Polyethylene/ Graphene Nanocomposites Prepared by In-situ Polymerization, Thermochimica Acta, 589, 226-234, 2014.
16.Marco C., Naffakh M., Gomez M.A., Santoro G., and Ellis G., The Crystallization of Polypropylene in Multiwall Carbon Nanotube-based Composites, Polym. Compos., 32, 324-333, 2011.
17.Xu J.Z., Chen C., Wang Y., Tang H., Li Z.M., and Hsiao B.S., Graphene Nanosheets and Shear Flow Induced Crystallization in Isotactic Polypropylene Nanocomposites, Macromolecules, 44, 2808-2818, 2011.
18.Xu D.H. and Wang Z.G., Role of Multi-Wall Carbon Nanotube Network in Composites to Crystallization of Isotactic Polypropylene Matrix, Polymer, 49, 330-338, 2008.
19.Dondero W.E. and Gorga R.E., Morphological and Mechanical Properties of Carbon Nanotube/Polymer Composites via Melt Compounding, J. Polym. Sci. Part B: Polym. Phys., 44, 864-478, 2006.
20.Zhang S.J., Lin W., Zhu L.B., Wong C.P., and Bucknall D.G., Gamma form Trans Crystals of Poly(propylene) Induced by Individual Carbon Nanotubes, Macromol. Chem. Phys., 211, 1348-1354, 2010.
21.Misra R.D.K., Jia Z., Huang H.Z., Yuan Q., and Shah J.S., Tunable Nanometer-scale Architecture of Organic-inorganic Hybrid Nanostructured Materials for Structural and Functional Applications, Macromol. Chem. Phys., 213, 315-323, 2012.
22.Wei C., Structural Phase Transition of Alkane Molecules in Nanotube Composites, Phys. Rev. B, 76, 134104 (10 pages), 2007.
23.Cheng S., Chen X., Hsuan Y.G., and Li C.Y., Reduced Graphene Oxide Induced Polyethylene Crystallization in Solution and Nanocomposites, Macromolecules, 45, 993-1000, 2012.
24.Yang H., Chen Y., Liu Y., Cai W.S., and Li Z.S., Molecular Dynamics Simulation of Polyethylene on Single Wall Carbon Nanotube, J. Chem. Phys., 127, 094902 (6 pages), 2007.
25.Xu J.Z., Liang Y.Y., Zhong G.J., Li H.L., Chen C., Li L., and Li Z.M., Graphene Oxide Nanosheets Induced Intrachain Conformational Ordering in a Semicrystalline Polymer, J. Phys. Chem. Lett., 3, 530-535, 2012.
26.Hu X., An H.N., Li Z.M., Geng Y., Li L.B., and Yang C.L., Origin of Carbon Nanotubes Induced Poly(L-lactide) Crystallization: Surface Induced Conformational Order, Macromolecules, 42, 3215-3218, 2009.
27.Zhang S.J., Lin W., Wong C.P., Bucknall D.G., and Kumar S., Nanocomposites of Carbon Nanotube Fibers Prepared by Polymer Crystallization, ACS Appl. Mater. Interfaces, 2, 1642-1647, 2010.
28.Takasaki M., Motoyama Y., Higashi K., Yoon S.H., Mochida I., and Nagashima H., Chemoselective Hydrogenation of Nitroarenes with Carbon Nanofiber-supported Platinum and Palladium Nanoparticles, Org. Lett., 10, 1601-1604, 2008.