Polyelectrolyte Complexes: Introduction and Application-Part I

Document Type : compile

Authors

1 MSc student/Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS)

2 Academic Staff, Institute for Advanced Studies in Basic Sciences (IASBS)

3 Academic Staff/Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS)

Abstract

Polymeric materials carrying positive and/or negative charges at neutral pH are referred as "polyelectrolytes". Many kinds of materials are considered as polyelectrolytes because they bear ionic groups of positive or negative charges on their surfaces. The interaction between two or more opposite charged polyelectrolytes in solution forms a polyelectrolyte complex (PEC). Polymers used for PEC formation are classified on the basis of origin as natural and synthetic. The worldwide agreement among investigators is that the PEC formation is an entropy-driven phenomenon. The contributing force for the formation of PECs in aqueous solutions is the release of low molecular weight counter ions (which were previously associated with the charged groups on polymer chains) that result in an increase in entropy of the system. PECs have many advantages such as high biodegradability, excellent biocompatibility, non-toxicity, low cost, low energy requirement for their production. There are numerous parameters affecting PEC formation including charge density, molecular weight, and salt concentration, pH of the reaction medium, ionic strength and mixing ratio. This article presents the properties of PEC, mechanism of PEC formation, factors affecting the formation of PEC, different methods for PEC synthesis and application of PECs. PEC is an emerging system for drug delivery to target sites, sustained and thereby prolonging the therapeutic action. They are also used in gene, protein and vaccine delivery, tissue engineering and fabrication of membranes.

Keywords

Main Subjects


1. Meka V.S., Sing M.K., Pichika M.R., Nali S.R., Kolapalli V.R., and Kesharwani P.A., Comprehensive Review on Polyelectrolyte Complexes, Drug Discovery Today, 22, 1697-1706, 2017.
2. Delair T., Colloidal Polyelectrolyte Complexes of Chitosan and Dextran Sulfate Towards Versatile Nanocarriers of Bioactive Molecules, Eur. J. Pharm. Biopharm., 78, 10–18, 2011.
3. Philipp B., Dautzenberg H., Linow K.J., Kotz J., and Dawydoff W., Polyelectrolyte Complexes Recent Developments and
Open Problems, Prog. Polym. Sci., 14, 91–172, 1989.
4. Koetz J. and Kosmella S., Polyelectrolytes and Nanoparticles, Springer, Berlin, 2007.
5. Robertis S.D., Bonferoni M.C., Elviri L., Sandri G., Caramella C., and Bettini R., Advances in Oral Controlled Drug Delivery: The Role of Drug–Polymer and Interpolymer Non-Covalent Interactions, Expert Opin. Drug Delivery, 12, 441–453, 2015.
6. Kulkarni A.D., Vanjari Y.H., Sancheti K.H., Patel H.M., Belgamwar V.S., Surana S.J., and Pardeshi C.V., Polyelectrolyte Complexes: Mechanisms, Critical Experimental Aspects, and Applications, Artif. Cells Nanomed. Biotechnol., 44, 1615- 1625, 2016.
7. Pergushov D.V., Muller A.H.E., and Schacher F.H., Micellar Interpolyelectrolyte Complexes, Chem. Soc. Rev., 41, 6888–
6901, 2012.
8. Bartkowiak A., Optimal Conditions of Transplantable Binary Polyelectrolyte Microcapsules, Ann. N. Y. Acad. Sci., 944,
120-134, 2001.
9. Kabanov A.V. and Zezin A.B., Soluble Interpolymeric Complexes As A New Class of Synthetic Polyelectrolytes, Pure
Appl. Chem., 56, 343–354, 1984. 
10. Tsuchida E. and Abe K., Interactions Between Macromolecules in Solution and Intermacromolecular Complexes,
Springer, Berlin, Heidelberg, 1-119, 1982.
11. Van der Gucht J., Spruijt E., Lemmers M., and Stuart M.A.C., Polyelectrolyte Complexes: Bulk Phases and Colloidal Systems, J. Colloid Interface Sci., 361, 407-422, 2011.
12. Dautzenberg H., Linow K.J., and Philipp B., Anionic to Form Water-Soluble Polysalts (Symplexes) and Cationic Copolymers of Acrylamide, Acta Polym., 33, 619–623, 1982.
13. Shovsky A., Varga I., Makuska R., and Claesson P.M., Formation and Stability of Water-Soluble, Molecular Polyelectrolyte Complexes: Effects of Charge Density, Mixing Ratio, and Polyelectrolyte Concentration, Langmuir, 25, 6113–6121,  2009.
14. Hu Y., Yang T., and Hu X., Novel Polysaccharides-Based Nanoparticle Carriers Prepared by Polyelectrolyte Complexation for Protein Drug Delivery, Polym. Bull., 68, 1183–1199, 2012.
15. Dautzenberg H., Polyelectrolyte Complex Formation in Highly Aggregating Systems. 1. Effect of Salt: Polyelectrolyte
Complex Formation in the Presence of NaCl, Macromolecules, 30, 7810–7815, 1997.
16. Dautzenberg H. and Kriz J., Response of Polyelectrolyte Complexes to Subsquent Addition of Salts with Different Cations, Langmuir, 19, 5204-5211, 2003.
17. Fukuda H. and Kikuchi Y., Polyelectrolyte Complexes of Sodium Dextran Sulfate with Chitosan, Die Makromol. Chem.,
178, 2895-2899, 1977.
18. Müller M., Keßler B., Fröhlich J., Poeschla S., and Torger B., Polyelectrolyte Complex Nanoparticles of Poly (Ethyleneimine) and Poly (Acrylic Acid): Preparation and Applications, Polymers, 3, 762-778, 2011.
19. Berger J., Reist M., Mayer J.M., Felt O., and Gurny R., Structure and Interactions in Chitosan Hydrogels Formed by Complexation or Aggregation for Biomedical Applications, Eur. J. Pharm. Biopharm., 57, 35-52, 2004.
20. Kindermann C., Matthée K., Strohmeyer J., Sievert F., and Breitkreutz J., Tailor-Made Release Triggering from Hot-Melt Extruded Complexes of Basic Polyelectrolyte and Poorly Water-Soluble Drugs, Eur. J. Pharm. Biopharm., 79, 372–381, 2011.
21. Shi D., Ran M., Zhang L., Huang H., Li X., Chen M., and  Akashi M., Fabrication of Biobased Polyelectrolyte Capsules
and Their Application for Glucose-Triggered Insulin Delivery, ACS Appl. Mater. Interfaces, 8, 13688-13697, 2016.
22. Pardeshi C.V., Rajput P.V., Belgamwar V.S., Tekade A.R., Patil G.B., and Chaudhary K.S., Solid Lipid Based Nanocarriers: An Overview, Acta Pharm., 62, 433–472, 2012.
23. Wu D. and Delair T., Stabilization of Chitosan/Hyaluronan Colloidal Polyelectrolyte Complexes in Physiological Conditions, Carbohydr. Polym., 119, 149–158, 2015.
24. Martins A.F., Pereira A.G.B., Fajardo A.R., Rubira A.F., and Muniz E.C., Characterization of Polyelectrolytes Complexes
Based on N,N,N-Trimethyl Chitosan/ Heparin Prepared at Different pH Conditions, Carbohydr. Polym., 86, 1266–1272,
2011.
25. Sarika P.R. and James N.R., Polyelectrolyte Complex Nanoparticles from Cationised Gelatin and Sodium Alginate
for Curcumin Delivery, Carbohydr. Polym., 148, 354-361, 2016.
26. Folchman-Wagner Z., Zaro J., and Shen W.C., Characterization of Polyelectrolyte Complex Formation between Anionic
and Cationic Poly(amino acids) and Their Potential Applications in pH-Dependent Drug Delivery, Molecules, 22, 1089-
1103, 2017.
27. Mukhopadhyay P., Chakraborty S., Bhattacharya S., Mishra R., and Kundu P.P., pH-Sensitive Chitosan/Alginate Core-
Shell Nanoparticles for Efficient and Safe Oral Insulin Delivery, Int. J. Biol. Macromol., 72, 640-648, 2015.
28. Amaduzzi F., Bomboi F., Bonincontro A., Bordi F., Casciardi S., Chronopoulou L., and Sennato S., Chitosan–DNA Complexes: Charge Inversion and DNA Condensation, Colloids Surf., B, 114, 1-10, 2014.
29. Csaba N., Garcia-Fuentes M., and Alonso M.J., Nanoparticles for Nasal Vaccination, Adv. Drug Delivery Rev., 61, 140-157, 2009.
30. Ceccaldi C., Bushkalova R., Alfarano C., Lairez O., Calise D., Bourin P., and Sallerin B., Evaluation of Polyelectrolyte Complex-Based Scaffolds for Mesenchymal Stem Cell Therapy in Cardiac Ischemia Treatment, Acta Biomater., 10, 901-911, 2014.
31. Zhao Q., An Q.F., Liu T., Chen J.T., Chen F., Lee K.R., and Gao C.J., Bio-Inspired Polyelectrolyte Complex/Graphene
Oxide Nanocomposite Membranes with Enhanced Tensile Strength and Ultra-Low Gas Permeability, Polym. Chem., 4,
4298-4302, 2013.