Microfabrication of "GelMA" Hydrogels: A Review

Document Type : compile

Author

iust

Abstract

In recent decades, the "GelMA" hydrogels as one of the biocompatible and biodegradable biomaterials are introduced in various applications of biomedical engineering. GelMA results from direct reaction of gelatin and methacrylic anhydride which has specific biological and physical properties making it suitable for the design and engineering of scaffolds, creating micro or nanoscale polymer nanocomposites, cell signaling, designing drug delivery systems, biosensors, and gene transfer or other biomedical engineering applications. GelMA forms cross-linked hydrogel by exposure to ultra-violet radiation. Various techniques could be applied in designing and manufacturing of GelMA in micro size, such as photopatterning, micromolding, self-assembly phenomenon, microfluidic, bioprinting, fibers and fabrics weaving. Three-dimensional structures and scaffolds based on GelMA hydrogel could be designed to mimic the structure of the natural tissue, used in tissue engineering and regeneration medicine. However, in this case, there are some challenges such as different length scales, making copies of capillary hollow microcapillaries, angiogenic production in micro size scale and limitations in oxygen-carrying through centimeter dimension, need to be investigated further. Using the combined methods of fabrication and exact investigations on the effect of process parameters and introduction of new additives could be the part of the solution. GelMA capabilities for use in various manufacturing methods, besides, its physical flexibility, mechanical and biological properties are promising for future biomedical applications and producing self-assembled organs with different types of cells.

Keywords

Main Subjects


1.Bulcke A.I.V.D., Bogdanov B., Rooze N.D., Schacht E.H., Cornelissen M., and Berghmans H., Structural and Rheological
Properties of Methacrylamide Modified Gelatin Hydrogels,Biomacromolecules, 1, 31-38, 2000.
2.Yue K., Santiago G.T., Alvarez M.M., Tamayol A., Annabi N., and Khademhosseini A., Synthesis, Properties and Biomedical Applications of Gelatin Methacryloyl (GelMA) Hydrogels, Biomaterials, 73, 254-271, 2015.
3.Aubin H., Nichol J.W., Hutson C.B., Bae H., Sieminski A.L., Cropek D.M., Akhyarie P., and Khademhosseini A., Directed 3D Cell Alignment and Elongation in Microengineered Hydrogels,Biomaterials, 31, 6941-6951, 2010.
4.Fan Y., Xu F., Huang G., Lu T.J., and Xing W., Single Neuron Capture and Axonal Development in Three-Dimensional MicroscaleHydrogels, Lab. Chip., 12, 4724-4731, 2012.
5.Gauvin R., Chen Y.-C., Lee J.W., Soman P., Zorlutuna P., Nichol J.W., Bae H., Chen S., and Khademhosseini A., Microfabrication of Complex Porous Tissue Engineering ScaffoldsUsing 3D Projection Stereolithography, Biomaterials, 33, 3824-3834, 2012.
6.Ovsianikov A., Deiwick A., Vlierberghe S.V., Dubruel P., Moeller L., Draeger G., and Chichkov B., Laser Fabrication of Three-dimensional CAD Scaffolds from Photosensitive Gelatin for Applications in Tissue Engineering, Biomacromolecules,
12, 851-858, 2011.
7.Peela N., Sam F.S., Christenson W., Truong D., Watson A.W., Mouneimne G., Ros R., and Nikkhah M., A Three DimensionalMicropatterned Tumor Model for Breast Cancer Cell Migration Studies, Biomaterials, 81, 72-78, 2016.
8.Serafim A., Tucureanu C., Petre D.G., Dragusin D.M., Salageanu A., Vlierberghe S.V., Dubruelc P., and Stancu I.C., One-Pot Synthesis of Superabsorbent Hybrid Hydrogels Based on Methacrylamide Gelatin and Polyacrylamide. Effortless Control of Hydrogel Properties Through Composition Design, New. J. Chem., 38, 3112-3126, 2014.
9.Jeon O., Wolfson W., and Alsberg E., In-Situ Formation ofGrowth-Factor-Loaded Coacervate Microparticle-Embedded Hydrogels for Directing Encapsulated Stem Cell Fate, Adv. Mater., 27, 2216-2223, 2015.
10.Qi H., Du Y., Wang L., Kaji H., Bae H., and Khademhosseini A., Patterned Differentiation of Individual Embryoid Bodies in Spatially Organized 3D Hybrid Microgels, Adv. Mater., 22, 5276-5281, 2010.
11.Hosseini V., Ahadian S., Ostrovidov S., Camci-Unal G., Chen S., Kaji H., Ramalingam M., and Khademhosseini A., EngineeredContractile Skeletal Muscle Tissue on a Microgrooved Methacrylated Gelatin Substrate, Tissue Eng., Part. A., 18, 2453-2465, 2012.
12.Obregon R., Ahadian S., Ramon-Azcon J., Chen L., Fujita T., Shiku H., Chen M., and Matsue T., Non-Invasive Measurementof Glucose Uptake of Skeletal Muscle Tissue Models Using a Glucose Nanobiosensor, Biosens. Bioelectron., 50, 194-201, 2013.
13.Hosseini V., Kollmannsberger P., Ahadian S., Ostrovidov S., Kaji H., Vogel V., and Khademhosseini A., Fiber-Assisted Molding (FAM) of Surfaces with Tunable Curvature to Guide Cell Alignmentand Complex Tissue Architecture, Small, 10, 4851-4857, 2014.
14.Annabi N., Tsang K., Mithieux S.M., Nikkhah M., Ameri A., Khademhosseini A., and Weiss A.S., Highly Elastic MicropatternedHydrogel for Engineering Functional Cardiac Tissue, Adv. Funct. Mater., 23, 4950-4959, 2013.
15.Sadr N., Zhu M., Osaki T., Kakegawa T., Yang Y., Moretti M., Fukuda J., and Khademhosseini A., SAM-Based Cell Transfer to Photopatterned Hydrogels for Microengineering Vascular-Like Structure, Biomaterials, 32, 479-490, 2011.
16.Zamanian B., Masaeli M., Nichol J.W., Khabiry M., Hancock M.J., Bae H., and Khademhosseini A., Interface-Directed Self-Assembly of Cell-Laden Microgels, Small, 6, 937-944, 2010.
17.Xu F., Wu C.A.M., Rengarajan V., Finley T.D., Keles H.O., Sung Y., Li B., Gurkan U.A., and Demirci U., Three-Dimensional Magnetic Assembly of Microscale Hydrogels, Adv. Mater.,23, 4254-4260, 2011.
18.Tasoglu S., Yu C.H., Liaudanskaya V., Guven S., Migliaresi C., and Demirci U., Magnetic Levitational Assembly for Living
Material Fabrication, Adv. Healthc. Mater., 4, 1469-1476, 2015.
19.Hancock M.J., Piraino F., Camci-Unal G., Rasponi M., and Khademhosseini A., Anisotropic Material Synthesis by CapillaryFlow in a Fluid Stripe, Biomaterials, 32, 6493-6504, 2011.
20.Hsieh H.Y., Camci-Unal G., Huang T.W., Liao R., Chen T.J., Paul A., Tseng F.G., and Khademhosseini A., Gradient Static-Strain Stimulation in a Microfluidic Chip for 3D Cellular Alignment, Lab. Chip., 14, 482-493, 2014.
21.Annabi N., Selimovic S., Cox J.P.A., Ribas J., Bakooshli M.A., Heintze D., Weiss A.S., Cropek D., and Khademhosseini
A., Hydrogel-Coated Microfluidic Channels for CardiomyocyteCulture, Lab. Chip., 13, 3569-3577, 2013.
22.Cha C., Oh J., Kim K., Qiu Y., Joh M., Shin S.R., Wang X., Camci-Unal G., Wan K.T., Liao R., and Khademhosseini A., Microfluidics-Assisted Fabrication of Gelatin-Silica Core-Shell Microgels for Injectable Tissue Constructs, iomacromolecules,
15, 283-290, 2014.
23.Schuurman W., Levett P.A., Pot M.W., Weeren P.R.V., Dhert W.J.A., Hutmacher D.W., Melchels F.P., Klein T.J., and Malda J., Gelatin-Methacrylamide Hydrogels as Potential Biomaterialsfor Fabrication of Tissue-Engineered Cartilage Constructs, Macromol. Biosci., 13, 551-561, 2013.
24.Hoch E., Hirth T., Tovar G.E.M., and Borchers K., ChemicalTailoring of Gelatin to Adjust its Chemical and Physical Properties for Functional Bioprinting, J. Mater. Chem. B., 1, 5675-5685, 2013.
25.Bertassoni L.E., Cardoso J.C., Manoharan V., Cristino A.L., Bhise N.S., Araujo W.A., Zorlutuna P., Vrana N.E., GhaemmaghamiA.M., Dokmeci M.R., and Khademhosseini A., Direct-Write Bioprinting of Cell-Laden Methacrylated Gelatin Hydrogels, Biofabrication, 6, 24105-24116, 2014.
26.Bertassoni L.E., Cecconi M., Manoharan V., Nikkhah M., Hjortnaes J., Cristino A.L., Barabaschi G., Demarchi D., DokmeciM.R., Yang Y., and Khademhosseini A., Hydrogel BioprintedMicrochannel Networks for Vascularization of Tissue Engineering Constructs, Lab. Chip., 14, 2202-2211, 2014.
27.Kolesky D.B., Truby R.L., Gladman A.S., Busbee T.A., Homan K.A., and Lewis J.A., 3D Bioprinting of Vascularized, Heterogeneous Cell-Laden Tissue Constructs, Adv. Mater., 26, 3124-3130, 2014.
28.Ahadian S., Ramón-Azcón J., Estili M., Obregón R., Shiku H., and Matsue T., Facile and Rapid Generation of 3D ChemicalGradients within Hydrogels for High-Throughput Drug Screening Applications, Biosens. Bioelectron., 59, 166-173, 2014.
29.Chung B.G., Lee K.H., Khademhosseini A., and Lee S.H., Microfluidic Fabrication of Microengineered Hydrogels and Their Application in Tissue Engineering, Lab. Chip., 12, 45-59, 2012.
30.Shi X., Ostrovidov S., Zhao Y., Liang X., Kasuya M., KuriharaK., Nakajima K., Bae H., Wu H., and Khademhosseini A., Microfluidic Spinning of Cell-Responsive Grooved Microfibers,Adv. Funct. Mater., 25, 2250-2259, 2015.