Multinuclear Metallocene-based Catalysts in Olefin Polymerization

Document Type : translation

Authors

1 IPPI

2 Iran Polymer and Petrochemical Institute (IPPI)

3 Ferdowsi University of Mashhad (FUM)

Abstract

During the last decades, multinuclear catalysts have captured the researcher's attention and also have shown impressive progress. The multinuclear catalysts such as metallocene-based complexes can be mono (homo) or multi (hetero) metallic(s). Albeit, reason and mechanism of the results from olefin polymerization and copolymerization in the presence of these catalysts are explained suggestively but a number of practical-theoretical studies confirmed cooperative effects between centers in relation to the structures. Among this class of catalysts, the sort of center and linkage are the main factors in comparison to their mononuclear analogs. Totally, the sort of catalyst center (active site), steric hindrance, electronic effects and inter-center distances can cause a variation in performance and catalyst behavior, producing polyolefin with different microstructure and properties. Moreover, such designed multinuclear structures exhibit the unprecedented levels of polyolefin branching, enhanced enchainment selectivity for functional and unfunctional α-olefin comonomers, enhanced polyolefin tacticity and molecular weight, modified chain transfer kinetics and LLDPE synthesis with a single binuclear catalyst and ethylene. In the following, diverse results of multinuclear metallocene-based catalysts are reported such as increasing or decreasing catalyst activity, average molecular weight, molecular weight distribution, stereospecific index, selectivity, content and type of branching or even maintaining catalytic and polymeric characteristics.

Keywords

Main Subjects


1.Kaminsky W. and Arndt M., Metallocenes for Polymer Catalysis,Adv. Polym. Sci., 127, 143-187, 1997.
2.Delferro M. and Marks T.J., Multinuclear Olefin PolymerizationCatalysts, Chem. Rev., 111, 2450-2485, 2011.
3.Horaceka M., Gyepesa R., Cisarovac I., Pinkasa J., Kubistaa J., and Lamac M., Intramolecular Activation of a Pendant NitrileGroup in Ti and Zr Metallocene Complexes, J. Organomet.Chem.,787, 56–64, 2015.
4.Spaleck W., Kuber F., Bachmann B., Fritze C., and Winter A., New Bridged Zirconocenes for Olefin Polymerization: Binuclearand Hybrid Structures, J. Mol. Catal. A: Chem., 128, 279-287, 1998.
5.Luo G., Luo Y., Hou Z., and Qu J., Intermetallic Cooperationin Olefifin Polymerization Catalyzed by a Binuclear SamaroceneHydride: A Theoretical Study, Organometallics, 35, 778-784, 2016.
6.Noh S.K., Kim J., Jung J., Ra C.S., Lee D.H., Lee H.B., Lee S.W., and Huh W.S., Syntheses of Polymethylene Bridged DinuclearZirconocenes and Investigation of their PolymerizationActivities, J. Organomet. Chem., 580, 90-97, 1999.
7.Noh S.K., Kim S., Yang Y., Lyoo W.S., and Lee D.H., Preparationof Syndiotactic Polystyrene Using the Doubly Bridged Dinuclear Titanocenes, Eur. Polym. J., 40, 227-235, 2004.
8.Lee M.H., Kim S.K., and Do Y., Biphenylene-Bridged DinuclearGroup 4 Metal Complexes: Enhanced Polymerization Properties in Olefin Polymerization, Organometallics, 24, 3618-3620, 2005.
9.Jungling S. and Mulhaupt R., Cooperative Effects in Binuclear Zirconocenes: Their Synthesis and Use As Catalyst in Propene Polymerization, J. Organomet. Chem., 460, 191-195, 1993.
10.Soga K., Ban H.T., and Uozumi T., Synthesis of a Dinuclearansa-Zirconocene Catalyst Having a Biphenyl Bridge and Applicationto Ethene Polymerization, J. Mol. Catal. A: Chem., 128, 273-278, 1998.
11.Jung J., Noh A.K., Lee D., Park S.K., and Kim H., Synthesis and Characterization of Group 4 Metallocene Complexes with Two Disiloxanediyl Bridges, J. Organomet. Chem., 595, 147-152, 2000.
12.Xu S., Dai X., Wu T., Wang B., Zhou X., and Weng L., Synthesis,
Structure and Polymerization Catalytic Properties of Doubly Bridged Bis(cyclopentadienyl) Dinuclear Titanium and Zirconium Complexes, J. Organomet. Chem., 645, 212-217, 2002.
13.Tian G., Wang B., Xu S., Zhou X., Liang B., Zhao L., Zou F., and Li Y., Ethylene Polymerization with Sila-Bridged DinuclearZirconocene Catalysts, Macromol. Chem. Phys., 203, 31-36, 2002.
14.Xu S., Feng Z.F., and Huang J.L., Synthesis of Double Silylene-bridged Binuclear Titanium Complexes and Their Use as Catalysts for Ethylene Polymerization, J. Mol. Catal. A: Chem., 250, 35-39, 2006.
15.Sheng X. and Jiling H., Asymmetric Binuclear Metallocene Complexes and Their Application for Olefin Polymerization, J. Appl. Polym. Sci., 130, 2891–2900, 2013.
16.Sierra J.C., Huerander D., Hill M., Kehr G., Erker G., and Frohlich R., Formation of Dinuclear Titanium and Zirconium Complexes by Olefin Metathesis–Catalytic Preparation of OrganometallicCatalyst Systems, Chem. Eur. J., 9, 3618-3622, 2003.
17.Xiao X., Sun J., Li X., Li H., and Wang Y., Binuclear TitanocenesLinked by the Bridge Combination of Rigid and Flexible Segment: Synthesis and Their Use As Catalysts for Ethylene Polymerization, J. Mol. Catal. A: Chem., 267, 86-91, 2007.
18.Xiao X.H., Sun J.Q., Li X., Wang Y.G., and Schumann H., Ethylene Polymerization with Novel Bridged Tri- and TetranuclearTitanocene/MAO Systems, Eur. Polym. J., 43, 164-171, 2007.
19.Gorl C. and Alt H.G., The Combination of Mononuclear Metallocene and Phenoxyimine Complexes to Give Trinuclear Catalysts for the Polymerization of Ethylene, J. Organomet. Chem., 692, 5727-5753, 2007.
20.Rimkus A.M. and Alt H.G., Di- and Trinuclear Zirconium Complexes as Catalysts for Ethylene Polymerization, J. Organomet.Chem., 820, 30-40, 2016.
21.MurrayR.E., Jayaratne K.C., Yang Q., Martin L., and Glass L., Nano-linked Heteronuclear Metallocene Catalyst Compositionsand Their Polymer Products, US Pat. 8,143,430 B2, 2012.
22.Kuwabara J., Takeuchi D., and Osakada K., Early–late HeterobimetallicComplexes As Initiator for Ethylene Polymerization.Cooperative Effect of Two Metal Centers to Afford Highly Branched Polyethylene, Chem. Commun., 36, 3815-3817, 2006.
23.Kuwabara J., Takeuchi D., and Osakada K., Zr/Zr and Zr/Fe Dinuclear Complexes with Flexible Bridging Ligands. Preparationby Olefin Metathesis Reaction of the Mononuclear Precursorsand Properties as Polymerization Catalysts, Organometallics,11, 2705-2712, 2005.
24.Diamond G.M., Chernega A.N., and Mountford P., Green M.L.H., New Mono- and Bi-nuclear ansa-Metallocenes of Zirconium and Hafnium as Catalysts for the Polymerization of Ethene and Propene, Dalton Trans., 6, 921-938, 1996.
25.Yan X.F., Chernega A., Green M.L.H., Sanders J., Souter J., and Ushioda T., Homo- and Hetero-Binuclear Ansa-Metallocenesof the Group 4 Transition Metals as Homogeneous co-Catalysts for the Polymerization of Ethene and Propene, J. Mol. Catal. A: Chem., 128, 119-141, 1998.
26.Green M.L.H. and Popham N.H., Synthesis of HeterobinuclearMetallocenes Containing Bridging ansa-Bis-ɳ-cyclopentadienyl Ligands, Dalton Trans., 7, 1049-1060, 1999.
27.Kuwabara J., Takeuchi D., and Osakada K., Synthesis and Properties of Zr–Co Heterodinuclear Complexes with Bridging
Bis(cyclopentadienyl) Ligand, J. Organomet. Chem., 690, 269-275, 2005.
28.Mitani M., Oouchi K., Hayakawa M., Yamada T., and MukaiyamaT., Olefin Polymerization Catalyzed by Homoor Heterobimetallic Zirconocene Complex/Methylaluminoxane System, Polym. Bull., 35, 677-682, 1995.
29.Huang J., Feng Z., Wang H., Qian Y., Sun J., Xu Y., Chen W., and Zheng G., Synthesis of Hetero-Bimetallic Metallocene Complexes and their Catalytic Activities for Ethylene Polymerization,J. Mol. Catal. A: Chem., 189, 187-194, 2002.
30.Alshammari H. and Alt H.G., Multinuclear Metallocene CatalystCompound for Olefin Polymerization and Copolymerizationand Method for Making Thereof, US Pat. 296455 Al, 2014.