Antibacterial Polyurethanes in Biomedical Applications

Document Type : compile

Author

ippi

Abstract

Polyurethanes and their counterparts, polyurethane-ureas (PUUs), a favorable group of polymers, are prepared from a wide variety of materials. PUs/PUUs offer a wide range of controllable properties and therefore, are known as good candidates for a broad range of applications. Among the very broad field of applications known for this group of polymers, biomedical devices and prosthesis, drug delivery vehicles and tissue engineering scaffolds have attracted most attention over recent decades. This study systematically reviews the current literature for biomedical applications of polyurethanes (PUs) and polyurethane-ureas. On the other hand, in addition to different qualities that are required for successful performance of a biomaterial (including biocompatibility, bio-stability and/ or biodegradability, hydrophilicity and/or hydrophobicity, adjustable mechanical properties, etc), antibacterial behavior is considered as an inevitable prerequisite in many applications. Therefore, the especial emphasis of this review paper is placed on polymers with antibacterial activity and the strategies towards preparation of antibacterial PUs and PUUs, in particular. Current strategies applied for preparation of antibacterial polyurethanes and polyurethane-ureas are reviewed. Among such approaches, adoption of nano-silver, blending with natural polymers of well-known inherent antibacterial activity such as chitosan, loading of antibacterial drugs and surface modification with antibacterial agents are discussed in details.

Keywords

Main Subjects


1.Kenawy E.R., Worley S.D., and Broughton R., The Chemistry and Applications of Antimicrobial Polymers: A State-of-the-Art Review, Biomacromolecules, 8, 1359-1384, 2007.
2.Polyurethanes in Biomedical Applications, Lamba M.K.N., Woodhouse KA., and Cooper S.L. (Eds.), CRC, USA, 1998.
3.Zdrahala R.J. and Zdrahala I.J., Biomedical Applications of Polyurethanes: A Review of Past Promises, Present Realities, and a Vibrant Future, J. Biomater., 14, 67-90, 1999.
4.Shokrolahi F., Yeganeh H., and Mirzadeh H., Simple and Versatile Method for the One-Pot Synthesis of Segmented Poly(urethane urea)s via In Situ-formed AB-type Macromonomers,Polym. Int., 60, 620–629, 2011.
5.Morelli S., Salerno S., and Holopainen J., Osteogenic and Osteoclastogenic
Differentiation of Co-cultured Cells in Polylactic Acid–Nanohydroxyapatite Fiber Scaffolds, J. Biotechnol., 204, 53-62, 2015.
6.Zhao W., Li J., Jin K., Kaixiang J., Wenlong L., Xuefeng Q., and Chenrui L., Fabrication of Functional PLGA-based ElectrospunScaffolds and Their Applications in Biomedical Engineering,
Mater. Sci. Eng. C, 59, 1181-1194, 2016.
7.Pathiraja A. and Martin D.J., Designing Biostable PolyurethaneElastomers for Biomedical Implants, Aust. J. Chem., 56, 545-557, 2003.
8.Biomedical Applications of Polyurethane, Vermette P., GriesserH.J., Laroche G., and Guidoin R. (Eds.), Landes Bioscience,Texas, USA, 2001.
9.Fujimoto K., Tadokoro H., Ueda Y., and Ikada Y., Polyurethane Surface Modification by Graft Polymerization of Acrylamidefor Reduced Protein Adsorption and Platelet Adhesion, Biomaterials, 14, 442-448, 1993.
10.Watson B.M., Kasper F.K., and Mikos A.G., Phosphorous-containing Polymers for Regenerative Medicine, Biomed. Mater.,9 , 025014, 2014.
11.Sharmin E., Ashraf S.M., and Ahmad S., Synthesis, Characterization,Antibacterial and Corrosion Protective Properties of Epoxies, Epoxy-Polyols and Epoxy-Polyurethane Coatings from Linseed and Pongamia Glabra Seed Oils, Int. J. Biolog. Macromol., 40, 407-22, 2007.
12.Kara F., Aksoy F.A., Calamak S., Hasirci N., and Aksoy S., Immobilization of Heparin on Chitosan-grafted Polyurethane Films to Enhance Anti-adhesive and Antibacterial Properties, J. Bioact. Compat. Polym., 31, 172-90, 2016.
13.Aguilar-Pérez F.J., Vargas-Coronado R.F., Cervantes-Uc J.M., Cauich-Rodríguez J.V., Covarrubias C., and Pedram-Yazdani M., Preparation and Bioactive Properties of Nano Bioactive Glass and Segmented Polyurethane Composites, J. Biomater.Appl., 30, 1362-1372, 2016.
14.Yang W., Both S.K., Zuo Y., Tahmasebi Birgani Z., HabibovicP., Li Y., Jansen J.A., and Yang F., Biological Evaluation of Porous Aliphatic Polyurethane/Hydroxyapatite Composite Scaffolds for Bone Tissue Engineering, J. Biomed. Mater. Res., 103A, 2251–2259, 2015.
15.Tetteh G., Khan A.S., Delaine-Smith R.M., Reilly G.C., and Rehman I.U., Electrospun Polyurethane/Hydroxyapatite BioactiveScaffolds for Bone Tissue Engineering: The Role of Solvent and Hydroxyapatite Particles, J. Mech. Beh. Biomed. Mater., 39, 95–110, 2014.
16.Prescott's Microbiology, Willey J., Sherwood L., and WoolvertonC.J. (Eds.), 1th ed., Chap. 3, McGraw Hill, 2017.
17.Kohanski M., Dwyer D.J., and Collins J.J., How Antibiotics Kill Bacteria: From Targets to Networks, Nat. Rev. Microbiol., 8, 423–435, 2010.
18.Jung W.K., Koo C.H., Kim K.W., Shin S., Kim S.H., and Park Y.H., Antibacterial Activity and Mechanism of Action of the Silver Ion in Staphylococcus aureus and Escherichia coli, Appl. Environ. Microbiol., 74, 2171-2178, 2008.
19.Cui L., Chen P., Chen S., Yuan Z., Yu C., Ren B., and Zhang K., In Situ Study of the Antibacterial Activity and Mechanism of Action of Silver Nanoparticles by Surface-Enhanced RamanSpectroscopy, Anal. Chem., 85, 5436-5443, 2013.
20.Ikeda T., Hirayama H., Yamaguchi H., Tazuke S., and WatanabeM., Polycationic Biocides with Pendant Active Groups: Molecular Weight Dependence of Antibacterial Activity, Antimicrob.Agents Chemother., 30, 132–136,1986.
21.Jeon S.J., Oh M., Yeo W.S., Galvao K.N., and Jeong J., UnderlyingMechanism of Antimicrobial Activity of Chitosan Microparticlesand Implications for The Treatment of Infectious Diseases, Plos. One., 21, e92723.
22.Ikeda T., Hirayama H., Suzuki K., Yamaguchi H., and Tazuke S., Biologically Active Polycations, Makromol. Chem., 187, 333–340, 1986.
23.Nonaka T., Hua L., Ogata T., and Kurihara S., Synthesis of Water-Soluble Thermosensitive Polymers Having PhosphoniumGroups From Methacryloyloxyethyl Trialkyl Phosphonium Chlorides–N-isopropylacrylamide Copolymers and Their Functions, J. Appl. Polym. Sci., 87, 386-393, 2003.
24.Nonaka T., Watanabe T., Kawabata T., and Kurihara S., Preparationof Thermosensitive and Superabsorbent Polymer Hydrogelsfrom Trialkyl-4-vinylbenzyl Phosphonium Chloride-N-Isopropylacrylamide-N,N′-Methylenebisacrylamide Copolymers and Their Properties, J. Appl. Polym. Sci., 79, 115–124, 2001.
25.Lichter J.A. and Rubner M.F., Polyelectrolyte Multilayers with Intrinsic Antimicrobial Functionality: The Importance of Mobile Polycations, Langmuir, 25, 7686–7694, 2009.
26.Actis L., Gaviria L., Guda T., and Ong J.L., Antimicrobial Surfacesfor Craniofacial Implants: State of The Art, J. Korean Assoc. Oral Maxillofac. Surg., 39, 43-54, 2013.
27.Chen C.Z., Beck-Tan N.C., Dhurjati P., van Dyk T.K., LaRossaR.A., and Cooper S.L., Quaternary Ammonium FunctionalizedPoly(propylene imine) Dendrimers as Effective Antimicrobials:Structure-Activity Studies, Biomacromolecules, 1, 473-480, 2000.
28.Kara F., Ayse Aksoy E., Yuksekdag Z., Aksoy S., and Hasirci N., Enhancement of Antibacterial Properties of Polyurethanes By Chitosan and Heparin Immobilization, Appl. Surf. Sci., 357B, 1692–1702, 2015.
29.Kara F., Ayse Aksoy E., Calamak S., Hasirci N., and Aksoy S., Immobilization of Heparin on Chitosan-Grafted Polyurethane Films to Enhance Anti-adhesive and Antibacterial Properties, J. Bioact. Compat. Polym., 31, 72-90, 2016.
30.Zia K.M., Zuber M., Saif M.J., Jawaid M., Mahmood K., ShahidM., Anjum M.N., and Ahmad M.N., Chitin Based PolyurethanesUsing Hydroxyl Terminated Polybutadiene, Part III: Surface Characteristics, Int. J. Biol. Macromol., 62, 670-676, 2013.
31.Li J.H., Hong R.Y., Li M.Y., Li H.Z., Zheng Y., and Ding J., Effects of ZnO Nanoparticles on the Mechanical and AntibacterialProperties of Polyurethane Coatings, Prog. Org. Coat., 64, 504–509, 2009.
32.Zeytuncu B. and Morcal M.H.I., Fabrication and Characterizationof Antibacterial Polyurethane Acrylate-Based Materials,
Mater. Res., 18, 867-872, 2015.
33.Paul D., Paul S.H., Roohpour N., Wilks M., and Vadgama P., Antimicrobial, Mechanical and Thermal Studies of Silver Particle-Loaded Polyurethane, J. Funct. Biomater., 44, 358-375, 2013.
34.Bakhshi H., Yeganeh H., Mehdipour-Ataei S., Shokrgozar M.A., Yari A., and Saeedi-Eslami S.N., Synthesis and Characterizationof Antibacterial Polyurethane Coatings from Quaternary Ammonium Salts Functionalized Soybean Oil Based Polyols, Mater. Sci. Eng., 33C, 153–164, 2013.
35.Yari A., Yeganeh H., Bakhshi H., and Gharibi R., Preparation and Characterization of Novel Antibacterial Castor Oil-based Polyurethane Membranes for Wound Dressing Application, J. Biomed. Mater. Res., 102A, 84-96, 2014.
36.Luo J., Deng Y., and Sun Y., Antimicrobial Activity and Biocompatibilityof Polyurethane-Iodine Complexes, J. Bioact. Compat. Polym., 25, 185- 206, 2010.
37.Das B., Mandal M., Upadhyay A., Chattopadhyay P., and Karak N., Bio-based Hyperbranched Polyurethane/Fe3O4 Nanocomposites: Smart Antibacterial Biomaterials for BiomedicalDevices and Implants, Biomed. Mater., 8, 035003, 2013.
38.Tsou C.H., Lee H.T., Hung W.S., Wang C.C., Shu C.C., Suen M.C., and Guzman M.D., Synthesis and Properties of AntibacterialPolyurethane with Novel Bis(3-pyridinemethanol) Silver Chain Extender, Polymer, 85, 96-105, 2016.
39.Gimeno M., Pinczowski P., Pérez M., Giorello A., Martínez MA., Santamaría J, Arruebo M., and Luján L., A Controlled Antibiotic Release System to Prevent Orthopedic-Implant Associated Infections: An in Vitro Study, Eur. J. Pharm. Biopharm.,96, 264–271, 2015.
40.Vasilev K., Cook J., and Griesser H.J., Antibacterial Surfaces for Biomedical Devices, Expert. Rev. Med. Devices, 6, 553-67, 2009.
41.Janmohammadi N. and Hasanjani Roshan M.R., Comparison the Efficacy of Cefazolin Plus Gentamicin with Cefazolin plus Ciprofloxacin in Management of Type IIIA Open Fractures, Iran Red. Crescent. Med. J., 13, 239-242, 2011.
42.Choi Y., Nirmala R., Lee J.Y., Rahman M., Hong S.T., and Kim H.Y., Antibacterial Ciprofloxacin HCl Incorporated PolyurethaneComposite Nanofibers via Electrospinning for BiomedicalApplications, Ceram. Int., 39, 4937–4944, 2013.
43.Sabitha M. and Sheeja R., Preparation and Characterization of Ampicillin-Incorporated Electrospun Polyurethane Scaffolds for Wound Healing and Infection Control, Polym. Eng. Sci., 55, 541–548, 2015.
44.Unnithan A.R., Barakat N.A.M., Pichiah P.B.T., Gnanasekaran G., Nirmala R., Cha Y.S., Jung C.H., El-Newehy M., and Kim H.Y., Wound-Dressing Materials with Antibacterial Activity from Electrospun Polyurethane–Dextran Nanofiber Mats Containing Ciprofloxacin HCl, Carbohydr. Polym., 90, 1786–1793, 2012.
45.Saha K., Butola S.B., and Joshi M., Drug-Loaded Polyurethane/Clay Nanocomposite Nanofibers for Topical Drug-DeliveryApplication, J. Appl. Polym. Sci., 131, 40230, 2014.
46.Fong N., Simmons A., and Poole-Warren L.A., Antibacterial Polyurethane Nanocomposites Using Chlorhexidine Diacetate as an Organic Modifier, Acta Biomater., 6, 2554–2561, 2010.