1.Stout D., Recent Advancements in Carbon Nanofiber and CarbonNanotube Applications in Drug Delivery and Tissue Engineering,Curr. Pharm. Des., 21, 2037-2044, 2015.
2.Ku S.H., Lee M., and Park C.B., Carbon-Based Nanomaterials for Tissue Engineering, Adv. Healthcare Mater., 2, 244-260, 2013.
3.Lamberti M., Pedata P., Sannolo N., Porto S., De Rosa A., and Caraglia M., Carbon Nanotubes: Properties, Biomedical Applications,Advantages and Risks in Patients and Occupationally-Exposed Workers, Int. J. Immunopathol. Pharmacol., 28, 4-13, 2015.
4.Ding X., Liu H., and Fan Y., Graphene-Based Materials in RegenerativeMedicine, Adv. Healthcare Mater., 4, 1451-1468, 2015.
5.Zheng L., Wu S., Tan L., Tan H., and Yu B., Chitosan-FunctionalizedSingle-Walled Carbon Nanotube-Mediated Drug Delivery of SNX-2112 In Cancer Cells, J. Biomater. Appl., 31, 379-386, 2016.
6.Bates K. and Kostarelos K., Carbon Nanotubes as Vectors for Gene Therapy: Past Achievements, Present Challenges and Future Goals, Adv. Drug Deliv. Rev., 65, 2023-2033, 2013.
7.Chen Q. and Thouas G.A., Metallic Implant Biomaterials, Mater.Sci. Eng., R, 87, 1-57, 2015.
8.Iijima S., Brabec C., Maiti A., and Bernholc J., Structural Flexibility of Carbon Nanotubes, J. Chem. Phys., 104, 2089–2092, 1996.
9.Shi X., Sitharaman B., Wilson L.J., and Raphael R., In Vitro Cytotoxicity of Single-walled Carbon Nanotube/Biodegradable
Polymer Nanocomposites, J. Biomed. Mater. Res. A, 86, 813-823, 2008.
10.Abarrategi A., Gutiérrez M.C., Moreno-Vicente C., HortigüelaM.J., Ramos V., López-Lacomba J.L., Ferrer M.L., and del Monte F., Multiwall Carbon Nanotube Scaffolds for Tissue Engineering Purposes, Biomaterials, 29, 94–102, 2008.
11.Hirata E., Uo M., Takita H., Akasaka T., Watari F., and YokoyamaA., Development of A 3D Collagen Scaffold Coated with Multiwalled Carbon Nanotubes, J. Biomed. Mater. Res. Part B, 90, 629–634, 2009.
12.Meng J., Kong H., Han Z., Wang C., Zhu G., Xie S., and Xu H., Enhancement of Nanofifibrous Scaffold of Multiwalled CarbonNanotubes/Polyurethane Composite to The Fibroblasts Growth and Biosynthesis, J. Biomed. Mater. Res. Part A, 88, 105–116, 2009.
13.Yildirim E.D., Yin X., Nair K., and Sun W., Fabrication, Characterization,and Biocompatibility of Single-Walled Carbon Nanotube-Reinforced Alginate Composite Scaffolds ManufacturedUsing Freeform Fabrication Technique, J. Biomed. Mater. Res. Part B, 87, 406–414, 2008.
14.Chao T.I., Xiang S., Chen C.S., Chin W.C., Nelson A.J., Wang C., and Lu J., Carbon Nanotubes Promote Neuron Differentiationfrom Human Embryonic Stem Cells, Biochem. Biophys. Res. Commun., 384, 426–430, 2009.
15.Shi X., Sitharaman B., Pham Q.P., Spicer P.P., Hudson J.L., Wilson L.J., Tour J.M., Raphael R.M. and Mikos A.G., In Vitro Cytotoxicity of Single-Walled Carbon Nanotube/Biodegradable Polymer Nanocomposites, J. Biomed. Mater. Res. A, 86, 813–823, 2008.
16.Sitharaman B., Shi X., Walboomers X.F., Liao H., Cuijpers V., Wilson L.J., Mikos A.G., and Jansen J.A., In Vivo Biocompatibilityof Ultra-Short Single-Walled Carbon Nanotube/Biodegradable Polymer Nanocomposites for Bone Tissue Engineering,Bone, 43, 362–370, 2008.
17.Green D., Longtin J., and Sitharaman B., The Effect of Nanoparticle-Enhanced Photoacoustic Stimulation On Multipotent
Marrow Stromal Cells, ACS Nano, 3, 2065–2072, 2009.
18.Sadegh H. and Shahryari-ghoshekandi R., Functionalization of Carbon Nanotubes and Its Application in Nanomedicine: A Review, Nanomedicine, 2, 231-248, 2015.
19.Zhang Z., Yang X., Zhang Y., Zeng B., Wang S., Zhu T., Roden R.B., Chen Y., and Yang R., Delivery of Telomerase Reverse Transcriptase Small Interfering RNA in Complex with PositivelyCharged Single-Walled Carbon Nanotubes SuppressesTumor Growth, Clin. Cancer Res., 12, 4933-4939, 2006.
20.Cai D., Mataraza J.M., Qin Z.H., Huang Z., Huang J., Chiles T.C., Carnahan D., Kempa K., and Ren Z., Highly Effificient Molecular Delivery into Mammalian Cells Using Carbon Nanotube Spearing, Nat. Methods, 2, 449–454, 2005.21.
Greco G.N., Tissue Engineering Research Trends, Nova Science,New York, 1th ed., 161-181, 2008.
22.Gong H., Peng R., and Liu Z., Carbon Nanotubes for BiomedicalImaging: The Recent Advances, Adv. Drug Delivery Rev., 65, 1951-1963, 2013.
23.Cherukuri P., Bachilo S., Litovsky S., and Weisman R., Near-Infrared Fluorescence Microscopy of Single-Walled Carbon Nanotubes in Phagocytic Cells, J. Am. Chem. Soc., 126, 15638–15639, 2004.
24.Leeuw T.K., Reith R.M., Simonette R.A., Harden M.E., Cherukuri P., Tsyboulski D.A., Beckingham K.M., and Weisman
R.B., Single-Walled Carbon Nanotubes in The Intact Organism: Near-IR Imaging and Biocompatibility Studies in rosophila, Nano Lett., 7, 2650–2654, 2007.
25.Heller D., Baik S., Eurell T., and Strano M., Single-Walled Carbon Nanotube Spectroscopy in Live Cells: Towards Long-Term Labels and Optical Sensors, Adv. Mater., 17, 2793–2798, 2005.
26.Kuźnik N. and Tomczyk M.M., Multiwalled Carbon Nanotube Hybrids as MRI Contrast Agents, Beilstein J. Nanotechnol., 7, 1086-1103, 2016.
27.De La Zerda A., Zavaleta C., Keren S., Vaithilingam S., Bodapati S., Liu Z., Levi J., Smith B.R., Ma T.J., Oralkan O., and Cheng Z., Carbon Nanotubes as Photoacoustic Molecular Imaging Agents in Living Mice, Nat. Nanotechnol., 3, 557-562, 2008.
28.Ogawa S., Lee T., Kay A., and Tank D., Brain Magnetic Resonance Imaging with Contrast Dependent on Blood Oxygenation, Proc. Natl. Acad. Sci. USA., 87, 9868–9872, 1990.
29.Servant A., Jacobs I., Bussy C., Fabbro C., Da Ros T., Pach E., Ballesteros B., Prato M., Nicolay K., and Kostarelos K., Gadolinium-Functionalised Multi-Walled Carbon Nanotubes as a T1 Contrast Agent for MRI Cell Labelling and Tracking, Carbon, 97, 126-133, 2016.