Helical Coordination Polymers Configured by Non-covalent Interactions: A Review

Document Type : compile

Authors

University of Tehran

Abstract

Coordination polymers (CPs), also known as metal-organic frameworks (MOFs), can be synthesized using organic bridging ligands and metal ions (or metal clusters). Structures with various architectures including one-, two- or three-dimensional polymeric networks can be formed depending on the bridging ligands, their donor atoms and coordination geometry of metal ions. In the structure of these inorganic-organic hybrid materials, there are different interactions such as coordination bonds, hydrogen bonds, π…π and CH…π interactions. These compounds are of industrial interests owing to their potential applications in the field of gas adsorption and storage, magnetism, drug delivery, heterogeneous catalysis and chemical sensors. Many published reports have made contributions to the preparation of porous coordination polymers with helical conformation using transition metals and chiral/achiral bridging ligands. Helical structural motifs have gained considerable importance because of their similarities in biological systems and useful applications. This paper presents an overview on selected examples of CPs with single-, double- and multi-stranded helical chains and discusses various factors that influence their constructions such as non-covalent interactions, ligand structure and counter ions. The connectivity between chirality of the building blocks and helicity of chains is also explained. Furthermore, the properties of helical CPs and some of their possible applications are explained in this article.

Keywords

Main Subjects


1.Najafi M., Abbasi A., Masteri-Farahani M., and Janczak J., Two Novel Octamolybdate Nanoclusters as Catalysts for Dye Degradation by Air Under Room Conditions, Dalton Trans., 44, 6089-6097, 2015.
2.Najafi M., Abbasi A., Masteri-Farahani M., and Rodrigues V.H.N., Synthesis, Characterization and Crystal Structure of a Copper Molybdate Coordination Polymer as an Epoxidation Catalyst, Inorg. Chim. Acta, 433, 21-25, 2015.
3.Najafi M., Abbasi A., Masteri-Farahani M., Shahbazi H., Motlagh
M.A., and Janczak J., A One-Dimensional PolyoxomolybdatePolymeras a Catalyst for the Epoxidation of Olefins, RSC Adv., 6, 29944-29949, 2016.
4.Keskin S. and Sholl D.S., Assessment of a Metal-Organic Framework Membrane for Gas Separations Using At
omically Detailed Calculations: CO2, CH4, N2, H2 Mixtures in MOF-5, Ind. Eng. Chem. Res., 48, 914-922, 2009.
5.Lan A., Li K., Wu H., Olson D.H., Emge T.J., Ki W., Hong M., and Li J., A Luminescent Microporous Metal–Organic Frameworkfor the Fast and Reversible Detection of High Explosives,Angew. Chem. Int. Ed., 48, 2334-2338, 2009.
6.Abednatanzi S., Abbasi A., and Masteri-Farahani M., Enhanced
Catalytic Activity of Nanoporous Cu3(BTC)2 Metal–Organic Framework viaImmobilization of Oxodiperoxo MolybdenumComplex, New J. Chem., 39, 5322-5328, 2015.
7.Robin A.Y. and Fromm K.M., Coordination Polymer Networks
with O-and N-Donors: What They are, Why and How They are Made, Coord. Chem. Rev., 250, 2127-2157, 2006.
8.Abbasi A., Geranmayeh S., Skripkinand M. and Eriksson L., Potassium Ion-Mediated Non-Covalent Bonded Coordination Polymers, Dalton Trans., 41, 850-859, 2012.
9.Abbasi A., Tarighi S., and Badiei A., A Three-Dimensional Highly Stable Cobalt(II) Metal–Organic Framework Based on Terephthalic Acid: Synthesis, Crystal Structure, Thermal and Physical Properties, Transition Met. Chem., 37, 679-685, 2012.
10.Noro S.I., Kitagawa S., Akutagawa T., and Nakamura T., Coordination Polymers Constructed from Transition Metal Ions and Organic N-
containing Heterocyclic Ligands: Crystal Structures and Microporous Properties, Prog. Polym.Sci., 34, 240-279, 2009.
11.Ho R.M., Chiang Y.W., Lin S.C., and Chen C.K., Helical Architectures
from Self-Assembly of Chiral Polymers and Block Copolymers, Prog.
Polym.Sci., 36, 376-453, 2011.
12.
Yeh C.W., Suen M.C., Hu H.L., Chen J.D., and Wang J.C., Synthesis and Structural Characterization of Two New ChiralCoordination Polymers of Cu(nicotinate)2(H2O) and Co(nicotinate)2, Polyhedron, 23, 1947-1952, 2004.
13.
Wang P.F., Sheng M.G., Wu X.S., and Wang X., Metal-Directedand Ligand-Distorted Assembly of Chiral/Achiral One-DimensionalCoordination Polymers: Syntheses, Structures andPhysical Properties, Inorg. Chim. Acta, 379, 135-139, 2011.
14.
Kathalikkattil A.C., Bisht K.K., Aliaga-Alcalde N., and Suresh E., Synthesis, Magnetic Properties, and Structural Investigationof Mixed-Ligand Cu(II) Helical Coordination Polymers with an Amino Acid Backbone and N-Donor Propping: 1-D Helical, 2-D Hexagonal Net (hcb), and 3-D ins Topologies, Cryst. Growth Des., 11, 1631-1641, 2011.
15.
Bi S., Wang A., Bi C., Fan Y., Xiao Y., Liu S., and Wang Q.,  Coordination Polymer of Zinc Based on Chiral Non-Racemic trans-N,N-bis-(2-hydroxy-1naphthalidehydene)-(1R,2R)-cyclohexanediamine:
Synthesis, Crystal Structure, Novel Coordinational
Models and Anticancer Activity, Inorg. Chim. Acta, 15, 167-171, 2012.
16.Ren S.B., Zhang J., Yang X.L., Li Y.Z., Du H.B., and You X.Z., A Single-helix Copper-containing Coordination Polymer
of Dihydroglyoxaline Sulfide Formed in situ through Oxidation of 1,3-imidazolidine-2-thione, J. Mol. Struct., 923, 90-93, 2009.
17.
Shakir M., Parveen S., Chingsubam P., Aoki K., Khan S.N., and Khan A.U., Cation Supported Self-Assembly of CoordinationPolymers, [(H2en)(ntpMCl2)]n (M= ZnII, CdII, HgII) Involving the TripodalAcid, ntp: X-ray Crystal Structure and DNA Binding Studies on Zinc Helicate, Polyhedron, 25, 2929-2934, 2006.
18.
Kim M.K., Bae K.L., and Ok K.M., From Pincers to Steps: Synthesis, Structure, Characterization, and Transformation of a New Helical Calcium-Organic Framework, Ca[NC5H3(CO2)2](H2O)1.5, Cryst. Growth Des., 11, 930-932, 2011.
19.
Liu Y., Liu L., Wang X., Cheng L., Hou H., and Fan Y., A Novel 3D Homochiral Helical Coordination Polymer Based on a Flexible Tripodal Ligand, Inorg. Chem. Commun., 21, 114-117, 2012.
20.
Xu C., Guo Q., Wang X., Hou H., and Fan Y., A Case Study of ZnII-bmb Meso-Helical Coordination Polymers upon the Spacer Angles and Lengths of Dicarboxylate Coligands, Cryst. Growth Des., 11, 1869-1879, 2011.
21.
Cheng L., Cao Q., Zhang L., and Gou S., Supramolecular Isomerism of Cu(I) and 3,5-di-2-pyridyl-1,2,4-triazolate via in Situ Solvothermal Ligand Reaction: Meso-helix and Luminescence,J. Coord. Chem., 65, 1821-1828, 2012.
22.
Ashiry K.O., Zhao Y.H., Shao K.Z., Su Z.M., Fu Y.M., and Hao X.R., A Metal–Organic Framework Containing Meso-helical Chains: Synthesis, Characterization and Luminescent Property, Inorg. Chem. Commun., 11, 1181-1183, 2008.
23.
Ding Y., Chen Q., Zhong J.C., Munakata M., Konaka H., Ning G.L., and Wang H.Z., Three-Dimensional Metal–Organic Frameworks: Two Ag(I) Coordination Polymers of TTF Derivativeswith Axially Chiral Helical Motifs, Polyhedron, 27, 1393-1400, 2008.
24.
Luo F., Che Y.X., and Zheng J.M., Synthesis and Description of the First Helical Chain of Cu–Pb Bimetallic Atoms and Cu(I)–Cu(II) Mixed-Valence, Inorg. Chem. Commun., 9, 848-851, 2006.
25.
He T., Yue K.F., Zhao Y.X., Chen S.P., Zhou C.S., and Yan N., Crystal Structures and Thermodynamics/Kinetics of Zn(II) Coordination Polymers with Helical Chains, J. Solid State Chem., 239, 113-120, 2016.
26.
Chen X.D. and Mak T.C.W., Single-Strand Helical Complexes Constructed from 2-Pyridinyl-3-Pyridinylmethanone: Tuning the Helical Pitch Length by Variation of Metal Cation and/or Counter Anion, Dalton Trans., 0, 3646-3652, 2005.
27.
Lee J.W., Kim E.A., Kim Y.J., Lee Y.A., Pak Y., and Jung O.S., Relationship between the Ratio of Ligand to Metal and the Coordinating
Ability of Anions. Synthesis and Structural Properties
of AgX-Bearing Bis(4-pyridyl)dimethylsilane (X- = NO2-, NO3-, CF3SO3-, and PF6-), Inorg. Chem., 44, 3151-3155, 2005.
28.
Zheng Y.Z., Liu G.F., Ye B.H., and Chen X.M., Synthesisand Structural Characterization of the HelicalCoordination Polymers [Co(phen)(oba)(H2O)2] and []Cd3(phen)3(oba)2(Hoba)2(H2O)2](phen= 1,10-phenanthroline; oba- 4,4′-oxybis(benzoate), Z. Anorg. Allg. Chem., 630, 290-300, 2004.
29.
Han L., Valle H., and Bu X., Homochiral Coordination Polymerwith Infinite Double-Stranded Helices, Inorg. Chem., 46, 1511-1513, 2007.
30.
Han Z.B., Cheng X.N., and Chen X.M., Effect of the Size of Aromatic Chelate Ligands on the Frameworks of Metal DicarboxylatePolymers: From Helical Chains to 2-D Networks, Cryst. Growth Des., 5, 695-700, 2005.
31.
Zhang L.Y., Liu G.F, Zheng S.L., Ye B.H., Zhang X.M., and Chen X.M., Helical Ribbons of Cadmium(II) and Zinc(II) Dicarboxylateswith Bipyridyl-Like Chelates Syntheses, CrystalStructures and Photoluminescence, Eur. J. Inorg. Chem., 2965-2971, 2003.
32.
Cui Y., Lee S. J., and Lin W., Interlocked Chiral Nanotubes Assembled from Quintuple Helices, J. Am. Chem. Soc., 125,6014-6015, 2003.
33.
Xiao D., Yuan R., Sun D., Zhang G., Chen H., He J., and Wang E., A Novel Self-Penetrating Metal–Organic Open Framework Containing Unusual Triple-Stranded Molecular Braid and Septuple Helices, J. Mol. Struct., 936, 264-269, 2009.
34.Qin L., Qiao W.C., Zuo W.J., Zeng S.Y., and Mei C., Two Zn Coordination Polymers with Meso-Helical Chains Based on Mononuclear or Dinuclear Cluster Units, J. Solis State Chem., 239, 53-57, 2016.
35.
Burchell T.J. and Puddephatt R.J., Homochiral and Heterochiral
Coordination Polymers and Networks of Silver(I), Inorg. Chem., 45, 650-659, 2006.
36.Wang Y.T., Tong M.L., Fan H.H., Wang H.Z, and Chen X.M., Homochiral Crystallization of Helical Coordination Chains Bridged by Achiral Ligands: Can It Be Controlled by the Ligand Structure, Dalton Trans., 424-426, 2005.
37. Chen C.L., Zhang Q., Yao J.H., Zhang J.Y., Kang B.S., and Su C.Y., Assembly of 1D Meso Coordination Polymer from a Chiral Mononuclear Complex by N Deprotonation of the Tris(2-benzimidazolyl) Ligand, Inorg. Chim. Acta, 361, 2934-2940, 2008.
38. Ezuhara T., Endo K., and Aoyama Y., Helical Coordination Polymers from Achiral Components in Crystals. Homochiral Crystallization, Homochiral Helix Winding in the Solid State, and Chirality Control by Seeding, J. Am. Chem. Soc., 121, 3279-3283, 1999.
39. Feng W., Xu Y., Zhou G., Zhang C., and Zheng X., Hydrothermal
Synthesis, Crystal Structure and Strong Blue Fluorescence of a Novel 3D Coordination Polymer Containing Copper and Zinc Centers Linked by Isonicotinic Acid Ligands, Inorg. Chem. Commun., 10, 49-52, 2007.
40. Xie S.M., Zhang Z.J., Wang Z.Y., and Yuan L.M., Chiral Metal-Organic Frameworks for High-resolution Gas Chromatographic Separations, J. Am. Chem. Soc., 133, 11892-11895, 2011.
41.Sahoo S.C., Kundu T., and Banerjee R., Helical Water Chain Mediated Proton Conductivity in Homochiral Metal-Organic Frameworks with Unprecedented Zeolitic unh-Topology, J. Am. Chem. Soc., 133, 17950-17958, 2011.
42.Lin Q., Wu T., Zheng S.T., Bu X. and Feng P., A Chiral Tetragonal
Magnesium-Carboxylate Framework with Nanotubular Channels, Chem. Commun., 47, 11852-11854, 2011.
43.Cheng Y., Kondo A., Noguchi H., Kajiro H., Urita K., Ohba T., Kaneko K., and Kanoh H., Reversible Structural Change of Cu-MOF on Exposure to Water and Its CO2 Adsorptivity, Langmuir, 25, 4510-4513, 2009.