Due to their high redox potential, metal ion couples such as silver (I)/silver (II), cerium (III)/ cerium (IV), cobalt (III)/cobalt (II) and manganese (III)/ manganese (II) are used as strong and stable oxidants in mediated electrochemical oxidation (MEO) method for surface modification of polymers, specially elastomers. Silver which has the highest redox potential and oxidation effects of metals is more used in mediated electrochemical oxidation methods. Because of the importance of surface modification and oxidation of elastomers in secondary applications such as improvement of adhesion or compatibility and also for both economic and environmental reasons, mediated electrochemical oxidation technique has received increasing attention. Enhancement of surface oxygen content, variations in surface morphology, topography, hydrophilicity, surface polarity, formation of surface functionality and removing weak surface boundary layer are the vital advantages of the modification of rubber surface obtained by mediated electrochemical oxidation method. Also, higher oxidation rate, lower energy consumption, and mediator ion reversibility are other benefits of mediated electrochemical oxidation method. In this article, a brief review on the mechanism of surface modification performed by mediated electrochemical oxidation methods and the effect of surface modification on the surface properties of elastomers are presented.