Application of Polymeric Nanocomposites Prepared via Reversible Addition-Fragmentation Chain-Transfer (RAFT) Polymerization in Drug Delivery: A Brief Review

Document Type : compile

Authors

1 Polymer Laboratory, Chemistry Department, Sharif University of Technology, P.O. Box 11155-8639, Tehran, Iran

2 Polymer Laboratory. Chemistry Department. Sharif University of Technology. Tehran. Iran

Abstract

Recently, the use of controlled-radical polymerization methods for the preparation of various polymer materials has received much attention due to the advantages of these methods and the elimination of the disadvantages of radical polymerization. There are many methods for controlled-living radical polymerization, but in general the three main methods for controlled-living radical polymerization are nitric oxide-mediated radical polymerization (NMP), atom transfer radical polymerization (ATRP), and reversible addition fragmentation chain transfer (RAFT). Among these methods, RAFT polymerization has attracted more attention due to its advantages over other methods used in the preparation of polymeric materials, including polymer nanocomposites. Nanocomposites are compounds obtained from a mixture of two or more different materials that are in the form of separate phases and at least one of their components has nanometer dimensions of less than 100 nm. The combination of high surface area in nanoparticles and different functional groups in the polymer can create unique properties in the nanocomposites. Due to these properties, polymer nanocomposites are widely used in various industries, including polymer catalysts, sensors, chemical adsorbents as well as drug delivery nanocarriers. In this article, the preparation of polymer nanocomposites based on various nanoparticles such as carbon, SiO2, Fe3O4, Au and MoS2 nanoparticles through RAFT polymerization and the effectiveness of these nanomaterials in drug delivery have been reviewed.

Keywords

Main Subjects


1.  Handbook of RAFT Polymerization, Barner-Kowollik C. (Ed.), Wiley-VCH Verlag, Weinheim, Germany, 1-45, 2008.
2.  Braunecker W.A. and Matyjaszewski K., Controlled/Living Radical Polymerization: Features, Developments, and Perspectives,  Prog. Polym. Sci.,  32, 93-146, 2007. 
3.  Zhang H., Controlled/”Living” Radical Precipitation Polymerization: A Versatile Polymerization Technique for Advanced Functional Polymers, Eur. Polym. J., 49, 579-600, 2013.
4.  Grubbs R.B. and Grubbs R.H., 50th Anniversary Perspective: Living Polymerization-Emphasizing the Molecule in Macromolecules,  Macromolecules,  50, 6979-6997, 2017. 
5.  Hybrid Materials: Synthesis, Characterization, and Applications, Kickelbick G. (Ed.), John Wiley & Sons, 1-46, 2007.
6.  Caseri W., Nanocomposites of Polymers and Inorganic Particles, Hybrid. Mater., 6, 49-86, 2007.
7.  Suri S.S., Fenniri H., and Singh B., Nanotechnology-Based Drug Delivery Sysems, J. Occup. Med. Toxicol., 2, 1-6, 2007. 
8.  Hussain F., Hojjati M. Okamoto M., and Gorga R.E., ReviewArticle: Polymer-Matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview, J. Compos. Mater.,  40, 1511-1575, 2006.
9.  Boyer C., Bulmus V., Davis T.P., Ladmiral V., Liu J., and Perrier S., Bioapplications of RAFT Polymerization, Chem. Rev., 109,  5402-5436, 2009.
10. Cardoso V.F., Francesko A., Ribeiro C., Bañobre-López M., Martins P., and Lanceros-Mendez S., Advances in Magnetic 
Nanoparticles for Biomedical Applications, Adv. Healthc. Mater.,  8,  1-35, 2018.
11. Ghamkhari A., Agbolaghi S., Poorgholy N., and Massoumi B., pH-Responsive Magnetic Nanocomposites Based on Poly(2-succinyloxyethyl methacrylate-co-methylmethacrylate) for Anticancer Doxorubicin Delivery Applications,  J. Polym. Res., 25, 2018. 
12. Hosseinzadeh S., Hosseinzadeh H., Pashaei S., and Khodaparas Z., Synthesis of Stimuli-Responsive Chitosan Nanocomposites via RAFT Copolymerization for Doxorubicin Delivery, Int. J. Biol. Macromol., 121, 677-685, 2019.
13. Hervault A., Dunn A.E., Lim M., Boyer C., Mott D., Maenosono S., and Thanh N.T.K., Doxorubicin Loaded Dual pH- and 
Thermo-responsive Magnetic Nanocarrier for Combined Magnetic Hyperthermia and Targeted Controlled Drug Delivery 
Applications,  Nanoscale,  8, 12152-12161, 2016.
14. Ahmadkhani L., Akbarzadeh A., and Abbasian M., Development and Characterization Dual Responsive Magnetic Nanocomposites for Targeted Drug Delivery Sysems,  Artif. Cells Nanomed. Biotechnol., 46, 1052-1063, 2018.
15. Xiao Z.P., Yang K.M., Liang H., and Lu J., Synthesis of Magnetic, Reactive, and Thermoresponsive Fe3O4 Nanoparticles via Surface-Initiated RAFT Copolymerization of N-isopropylacrylamide and Acrolein, J. Polym. Sci. Part A: Polym. Chem.,  48, 542-550, 2010.
16. Pourjavadi A., Kohesanian M., and Shirzad M., Synthesis and Characterization of Magnetic Hybrid Nanomaterials via RAFT Polymerization: A pH Sensitive Drug Delivery Sysem, Colloids Surf. B: Biointerfaces., 174, 153-160, 2019.
17. Pourjavadi A., Kohesanian M., and Streb C., pH and Thermal Dual-Responsive Poly(NIPAM-co-GMA)-Coated Magnetic 
Nanoparticles via Surface-Initiated RAFT Polymerization for Controlled Drug Delivery, Mater. Sci. Eng. C., 108, 110418, 
2020.
18. Yang K., Feng L., Shi X., and Liu Z., Nano-Graphene in Biomedicine: Theranosic Applications,  Chem. Soc. Rev.,  42, 
530-547,  2013.
19. Abbasian M., Roudi M.M., Mahmoodzadeh F., Eskandani M., and Jaymand M., Chitosan-Grafted Poly(methacrylic acid)/Graphene Oxide Nanocomposite as a pH-Responsive de novo Cancer Chemotherapy Nanosysem, Int. J. Biol. Macromol., 118, 1871-1879, 2018.
20. Song Z., Xu Y., Yang W., Cui L., Zhang J., and Liu J., Graphene/Tri-block Copolymer Composites Prepared via RAFT Polymerizations for Dual Controlled Drug Delivery via pH Stimulation and Biodegradation, Eur. Polym. J., 69, 559-
572,  2015.
21. Pourjavadi A., Kohesanian M., and Yaghoubi M., Poly(glycidyl methacrylate)-Coated Magnetic Graphene Oxide as a Highly Efcient Nanocarrier: Preparation, Characterization, and Targeted DOX Delivery, New J. Chem., 43, 18647-18656, 2019.
22. Gomes D.S., Santos A.M.C., Neves G.A., and Menezes R.R., A Brief Review on Hydroxyapatite Production and Use in 
Biomedicine,  Cerâmica, 65, 282-302, 2019.
23. Heng C., Zheng X., Liu M., Xu D., Huang H., Deng F., Hui J., Zhang X., and Wei Y., Fabrication of Luminescent Hydroxyapatite Nanorods through Surface-Initiated RAFT Polymerization: Characterization, Biological Imaging and 
Drug Delivery Applications, Appl. Surf. Sci., 386, 269–275, 2016.
24. Bach L.G., Rafqul Islam M., Vo T.S., Kim S.K., and Lim K.T., Poly(allyl methacrylate) Functionalized Hydroxyapatite 
Nanocrysals via the Combination of Surface-Initiated RAFT Polymerization and Thiol-ene Protocol: A Potential Anticancer 
Drug Nanocarrier,  J. Colloid Interface Sci.,  394, 132-140, 2013. 
25. Jeelani P.G., Mulay P., Venkat R., and Ramalingam C., Multifaceted Application of Silica Nanoparticles. A Review, 
Silicon,  12,  1337-1354,  2020. 
26. Zheng Y., Wang L., Lu L., Wang Q., and Benicewicz B.C., pH and Thermal Dual-Responsive Nanoparticles for Controlled 
Drug Delivery with High Loading Content, ACS Omega, 2, 3399-3405, 2017.
27. Elahi N., Kamali M., and Baghersad M.H., Recent Biomedical Applications of Gold Nanoparticles: A Review, Talanta, 184, 537-556, 2018.
28. Wang Z., Jia L., and Li M.H., Gold Nanoparticles Decorated by Amphiphilic Block Copolymer as Efcient Sysem for Drug Delivery,  J. Biomed. Nanotechnol.,  9, 61-68, 2013.
29. Ishag A. and Sun Y., Recent Advances in Two-Dimensional MoS2 Nanosheets for Environmental Application,  Ind. Eng. 
Chem. Res.,  60, 8007-8026, 2021.
30. Zhang A., Li A., Zhao W., Yan G., Liu B., Liu M., Li M., Huo B., and Liu J., An Efcient and Self-guided Chemohotothermal Drug Loading Sysem Based on Copolymer and Transferrin Decorated MoS2 Nanodots for Dually Controlled Drug Release, Chem. Eng. J.,  342, 120-132, 2018.