توازن آب‌دوستی-چربی‌دوستی امولسیون‌کننده‌ها و روش‌های تعیین پایداری سامانه‌های امولسیونی

نوع مقاله : تالیفی

نویسندگان

1 دانشگاه صنعتی مالک اشتر تهران (مجتمع دانشگاهی شیمی و مهندسی شیمی - صندوق پستی 1774/15875)

2 گروه شیمی، دانشکده شیمی، مجتمع دانشگاهی شیمی و مهندسی شیمی، دانشگاه صنعتی مالک اشتر

چکیده

سامانه مخلوط امولسیون (معمولا آب، روغن و امولسیون‌کننده) شامل دو فاز امتزاج‌ناپذیر است، به‌طوری که یکی از فازها (پراکنه) در فاز دیگر (پراکنده‌ساز-پیوسته) پراکنده شده است. امولسیون‌ها به علت خواص رئولوژیکی و فیزیکی شیمیایی ویژه معمولا در صنایع مختلف آرایشی-بهداشتی، دارویی، غذایی و تخریبی (راه‌سازی، تخریب بنا و از این دست) به‌کار می‌روند. از الزامات مهم در امولسیون‌ها، برخورداری از پایداری مناسب در مدت زمان معین است. سامانه‌های امولسیونی معمولا از نظر ترمودینامیکی ناپایدار هستند. عوامل متعددی باعث ایجاد ناپایداری در آن‌ها می‌شود که شامل متغیرهای فرایند تولید و شرایط انبارش می‌شود. از این‌رو، استفاده از امولسیون‌کننده‌ها برای ایجاد امولسیونی با پایداری بلندمدت مناسب است و عملکرد آن‌ها با تعیین مشخصه توازن آب‌دوستی- چربی‌دوستی (HLB) در این ترکیبات انجام می‌گیرد. مقدار HLB عددی است که برای نشان‌دادن تمایل آب‌دوستی و چربی‌دوستی امولسیون‌کننده استفاده می‌شود. در این مقاله، مفهوم HLB معرفی و روش‌های تعیین این مشخصه برای انواع امولسیون‌کننده‌های یونی و غیریونی ارائه می‌شود. پس از آن، با توجه به مدنظر قراردادن HLB امولسیون‌کننده و ارتباط آن با پایداری، به روش‌های مختلف ارزیابی پایداری امولسیون‌ها پرداخته می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Hydrophilic-Lipophilic Balance of Emulsifers and Methods for Determination the Emulsion Systems Stability

نویسندگان [English]

  • Safiyeh Farkhani 1
  • Saeed Babaee 2
  • Mohammad Mirzaei 2
1 Malek Ashtar Industerial University, Chemistry and Chemical Engineering Complex, Tehran, Iran, P.O.Box 15875.1774
2 Chemistry group, Faculty of chemistry, Chemical Engineering Complex, Malek Ashtar Industerial University.
چکیده [English]

An emulsion mixture system (usually water, oil and emulsifer) consists of two
immiscible phases, the dispersed phase and the dispersion medium (dispersant-
continuous). Due to their specifc rheological and physical-chemical properties,
emulsions are commonly used in different industries such as cosmetics-pharmaceuticals,
food and destruction (road construction, building destruction, etc.). One of the important
requirements is appropriate stability of the emulsions over a certain period of time.
Emulsions are thermodynamically unstable and several factors affect their instability
including the variables of production process and storage conditions. Therefore,
emulsifers are suitable to exhibit long-term stability and their performance can be
determined by identifying the hydrophilic-lipophilic balance (HLB) characteristic in
these compounds. HLB value is a number which is given by the emulsifer to indicate
the hydrophilic and lipophilic tendencies of the material. The present work introduces
the concept of HLB and methods for determination this character in various ionic and
nonionic emulsifers. Considering the relation of the emulsifer HLB to its stability,
different methods for evaluation the emulsions stabilities are discussed.

کلیدواژه‌ها [English]

  • Hydrophobicity
  • Lipophilicity
  • emulsifer
  • Emulsion
  • Stability
1. Zhang H., Dasbiswas K., Ludwig N.B., Han G., Lee B., Vaikuntanathan S., and Talapin D.V., Stable Colloids in Molten
Inorganic Salts, Int. J. Sci., 542, 328-331, 2017.
2. Goodarzi F. and Zendehboudi S., A Comprehensive Review on Emulsions and Emulsion Stability in Chemical and Energy
Industries, Can. J. Chem. Eng., 97, 281-309, 2019.
3. Miller R., Emulsifiers: Types and Uses, Academic, Oxford, 498-502, 2016.
4. Dickinson E., Hydrocolloids as Emulsifiers and Emulsion Stabilizers, Food Hydrocolloids, 23, 1473-1482, 2009.
5. Hidalgo-Alvarez R., Structure and Functional Properties of Colloidal Systems, CRC, Florida, 13-18, 2017.
6. Marquez R., Forgiarini A.M., Langevin D., and Salager J.L., On the Instability of Emulsions Made with Surfactant-Oil-
Water Systems at Optimum Formulation with Ultralow Interfacial Tension, Langmuir, 34, 9252-9263, 2018.
7. Tadros T., Emulsion Science and Technology: A General Introduction, Wiley-VCH, Weinheim, 1-56, 2009.
8. Tadros T., Izquierdo P., Esquena J., and Solans C., Formation and Stability of Nano-Emulsions, Adv. Colloid Interface Sci.,
108, 303-318, 2004.
9. Zhang R., Zhang Z., Zhang H., Decker E.A., and McClements D.J., Influence of Emulsifier Type on Gastrointestinal Fate of
Oil-in-Water Emulsions Containing Anionic Dietary Fiber (Pectin), Food Hydrocolloids, 45, 175-185, 2015.
10. Hong I.K., Kim S.I., and Lee S.B., Effects of HLB Value on Oil-in-Water Emulsions: Droplet Size, Rheological Behavior,
Zeta-Potential, and Creaming Index, J. Ind. Eng. Chem., 67, 123-131, 2018.
11. Burlatsky S.F., Atrazhev V.V., Dmitriev D.V., Sultanov V.I., Timokhina E.N., Ugolkova E.A., Tulyani S., and Vincitore A.,
Surface Tension Model for Surfactant Solutions at the Critical Micelle Concentration, J. Colloid Interface Sci., 393, 151-
160, 2013.
12. Broze G., Handbook of Detergent Part A, CRC, USA, 181- 253, 1999.
13. Wanga F., Lina W., Ling Z., and Fang X., A Comprehensive Review on Phase Change Material Emulsions: Fabrication,
Characteristics, and Heat Transfer Performance A, Sol. Energy Mater. Sol. Cells, 19, 218-237, 2019.
14. Gadhave A., Determination of Hydrophilic-Lipophilic Balance Value, Int. J. Sci. Res., 3, 573-575, 2014.
15. The HLB System: A Time-Saving Guide to Emulsifier Selection, https://www.firp.ula.ve/archivos /historicos, ICI Americas
Inc., Wilmington, 1-22, 1980. 
16. Mahadevan E.G., Ammonium Nitrate Explosives for Civil Applications: Slurries, Emulsions and Ammonium Nitrate Fuel
Oils, Wiley-VCH, Weinheim, 113-155, 2013.
17. Kabri T.H., Arab-Tehrany E., Belhaj N., and Linder M., Physico- Chemical Characterization of Nano-Emulsions in Cosmetic Matrix Enriched on Omega-3, J. Nanobiotechnol., 9, 1-41, 2011.
18. Fu Z., Liu M., Xu J., Wang Q., and Fan Z., Stabilization of Water-in-Octane Nano-Emulsion-Part I: Stabilized by Mixed
Surfactant Systems, Fuel, 89, 2838-2843, 2010.
19. Farooq A., Shafaghat H., Jae J., Jung S.C., and Park Y.K., Enhanced Stability of Bio-Oil and Diesel Fuel Emulsion Using
Span80 and Tween60 Emulsifiers, J. Environ. Manage., 231, 694-700, 2019.
20. Royer M., Nollet M., Catte M., Collinet M., and Pierlot C., To-wards A New Universal Way to Describe the Required  ydrophilic Lipophilic Balance of Oils Using the Phase Inversion Temperature of C10E4/n-Octane/Water Emulsions, Colloids
Surf. A, 536, 165-171, 2018.
21. Pawignya H., Prasetyaningrum A., Dyartanti E.R., Kusworo T.D., and Pramudono B., Estimation Hydrophilic-Lipophilic
Balance Number of Surfactants, AIP Conference Proceedings, 1710, 2016, doi: 10.1063/1.4941521.
22. Song M.G., Jho S.H., Kim J.Y., and Kim J.D., Rapid Evaluation of Water-in-Oil (W/O) Emulsion Stability by Turbidity
Ratio Measurements, J. Colloid. Interface. Sci., 230, 213-215, 2000.
23. Kovalchuk K. and Masalova I., Factors Influencing the Crystallization
of Highly Concentrated Water in Oil Emulsions: DSC Study, S. Afr. J. Sci., 108, 30-34, 2012.
24. Wang L. and Fang J., Rheological Properties and Water-in-Oil Structural Stability of Emulsion Matrixes, Cent. Eur. J. Energ. Mater., 10, 87-102, 2013.
25. Http://www.biophysics.bioc.cam.ac.uk/files/Zetasizer_Nano_ user_manual_Man0317.
26. Kirby B.J. and Hasselbrink E.F., Zeta Potential of Microfluidic Substrates: 1. Theory, Experimental Techniques, and Effects on Separations, Electrophoresis, 25, 187–202, 2004.
27. Huo W., Zhang X., Gan K., Chen Y., Xu J., and Yang J., Effect of Zeta Potential on Properties of Foamed Colloidal Suspension, J. Eur. Ceram., 39, 574-583, 2019.
28. Mohammadi M., Ghanbarzadeh B., Rezaei Mokarram R., Hoseini M.Y., and Hamishehkar H., Study of Stability, Zetapotential, and Steady Rheological Properties of Nanoliposomes Containing Vitamin D3, Med. J. Tabriz (Persian), 4, 
102-111, 2014.
29. Ferreira M.R.A., Rosilene R., Santiago R.R., Souza T.P., Egito E.S.T., Oliveira E.E., and Soares L.A.L., Development and
Evaluation of Emulsions from Carapa Guianensis (Andiroba) Oil, AAPS Pharm. Sci. Technol., 11, 1383-1390, 2010.
30. Limage S., Schmitta M., Vincent-Bonnieu S., Dominici C., and Antoni M., Characterization of Solid-Stabilized Water/Oil
Emulsions by Scanning Electron Microscopy, Colloids. Surf. A., 365, 154-161, 2010.
31. Andre V., Willenbacher N., Debus H., Borger L., Fernandez P., Frechen T., and Rieger J., Prediction of Emulsion Stability:
Facts and Myth, Cosmetics and Toiletries Manufacture Worldwide, U.S. Aston, 102-109, 1994.
32. Ben G. and Tatarsky D., Application of NMR for the Determination of Nonionic Surfactants of HLB Values, J. Am. Oil
Chem. Soc., 49, 499-500, 1972.
33. Dujpen T. and Sa-Ngiamvibool W., The Measurement Technique of Surface Tension Using Inductance Values, PRZ Elektrotechniczn, 4, 120-123, 2018.
34. Heusch R., Eine Experimentally Methode Zur Bestimmung Des HLB-Wertes Von Tensiden, Kolloid-Z. Z. Polymer, 236,
31-38, 1970.
35. Kruglyakov P.M., Hydrophile-Lipophile Balance of Surfactants and Solid Particles, Elsevier, Amsterdam, 146-259,
2000.
36. Frentcel M., Shwartz R., and Garti N., Turbidity Measurements as a Technique for Evaluation of Water-in-Oil Emulsion
Stability, J. Disper. Sci. Technol., 3, 195-207, 1982.
37. Song M.G., Cho S.H., Kim J.Y., and Kim J.D., Novel Evaluation Method for the Water-in-Oil (W/O) Emulsion Stability
by Turbidity Ratio Measurements, Korean J. Chem. Eng., 19, 425-430, 2002.
38. Fernandes C.P., Mascarenhas M.P., Zibetti F.M., Lima B.G., Oliveira R.P.R.F., Rocha L., and Falcao D.Q., HLB Value,
an Important Parameter for the Development of Essential Oil Phytopharmaceuticals, J. Pharmacognosy, 23, 108-114, 2013.