رزین‌ها، کامپوزیت‌ها و کوپلیمرهای برپایه هیومین؛ تبدیل محصولات جانبی کم‌ارزش فرایند زیست‌پالایش به مواد باارزش افزوده زیاد

نوع مقاله : تالیفی

نویسنده

پژوهشگاه استاندارد

چکیده

امروزه به­ دلیل اتمام سریع سوخت­ های فسیلی، تقاضای فزاینده­ ای برای تولید مواد مبتنی بر منابع تجدیدپذیر وجود دارد. تولید اجزای سازنده کربنی جدید و متنوع از منابع زیست­ توده­ای، امیدوارکننده ­ترین راه حل برای کاهش و در نهایت جایگزینی مواد شیمیایی مشتق ­شده از نفت است. وجود گروه­ های عاملی متعدد در مواد شیمیایی مشتق ­شده از زیست­ توده اغلب به تشکیل محصولات جانبی متنوع منجر می­شود. کربوهیدرات­ها فراوان­ترین منبع کربن زیست­ پایه بوده و بنابراین گزینه مناسبی برای توسعه مواد اولیه از زیست­ توده هستند. در حین فرایند آب­گیری کاتالیزشده با اسید کربوهیدرات­ها، ترکیبات شیمیایی تجدیدپذیر باارزشی مانند فورفورال، هیدروکسی ­متیل­فورفورال (HMF) و لوولینیک اسید (LA) تشکیل می­شوند که از این ترکیبات به ­عنوان ماده اولیه برای سنتز سایر ترکیبات شیمیایی مهم استفاده می­شود. طی این فرایند، مقادیر زیادی از محصولات جانبی کربنی و نامحلول تشکیل می­شوند که معمولا با واکنش­های پلیمرشدن عرضی HMF و چند حد واسط ناشی از آب­گیری قندها، تشکیل می­شوند. تشکیل این مواد که هیومین نامیده می­شوند، موجب کاهش بازده زیادی در فرایندهای زیست­ پالایش می­ شود. ساختار شیمیایی هیومین دارای گروه­های عاملی متنوعی است که می­تواند برای توسعه گروه جدیدی از مواد گرماسخت و کامپوزیت­ ها به­ کار ­رود و فرصت عالی برای افزایش مقدار کربن تجدیدپذیر محصولات نهایی و بهبود خواص آن­ها ارائه ­دهد. در این مقاله، کاربردهای مختلف هیومین برای تهیه رزین­ها، کامپوزیت­ها و کوپلیمرهای با مقدار کربن زیست­ پایه زیاد ارائه شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Humin-Based Resins, Composites and Copolymers; Conversion of Low-Value By-products of the Biorefining Process into High Value-Added Materials

نویسنده [English]

  • Fezzeh Aryanasab
Standard Research Institute (SRI)
چکیده [English]

T oday, due to the rapid exhaustion of fossil fuels, there is a growing demand for the
production of materials based on renewable sources. The production of new and
diverse carbon components from biomass sources is the most promising solution to the
reduction and eventual replacement of petroleum-derived chemicals. The presence of
many functional groups in biomass-derived chemicals often leads to the formation of a
various by-products. Carbohydrates are the most abundant source of bio-based carbon
and are therefore a viable option for the development of raw materials from biomass.
During the acid-catalyzed dehydration of carbohydrates, valuable renewable chemical
compounds such as furfural, hydroxymethyl furfural (HMF) and levolinic acid (LA) are
formed, which are used as raw materials for the synthesis of other important chemical
compounds. During this process, large amounts of carbon and insoluble by-products are
formed, which are usually formed by cross-polymerization reactions of HMF and several
intermediates resulting from the dehydration of sugars. The formation of these substances,
called humines, greatly reduces the efficiency of biorefining processes. The chemical
structure of humine has a variety of functional groups that can be used to develop a new set
of thermosets and composites, providing an excellent opportunity to increase the amount of
renewable carbon in the final products and improve their properties. In this paper, various
applications of humins for the preparation of resins, composites and copolymers with high
level of bio-based carbon are presented.

کلیدواژه‌ها [English]

  • biorefinery by-products
  • humin
  • bioresin
  • biocomposite
  • biocopolymer
1. Patil S.K.R., Heltzel J., and Lund C.R.F., Comparison of Struc tural Features of Humins Formed Catalytically from
Glucose, Fructose, and 5‑Hydroxymethylfurfuraldehyde, En ergy Fuels, 26, 5281-5293, 2012.
2. Zandvoort I.V., Towards the Valorization of Humin By- prod ucts: Characterization, Solubilization and Catalysis,
PhD Thesis, Utrecht University, March 2015.
3. Mulder G.J., Untersuchungen über die Humussubstanzen, J. Prakt. Chem., 21, 203-240, 1840.
4. Hayes D.J., Ross J.M., Hayes H.B., and Fitzpatrick S.W., In Biorefineries-Industrial Processes and Products, Kamm B.,
Gruber P.R., and Kamm M. (Eds.), John Wiley and Sons, New York, 139-164, 2006.
5. Kuster B.F.M. and van der Baan H.S., The Influence of the Initial and Catalyst Concentrations on the Dehydration of
D- fructose, Carbohydr. Res., 54, 165-176, 1977.
6. Weingarten R., Cho J., Xing R., Conner W.C., and Huber G.W., Kinetics and Reaction Engineering of Levulinic Acid
Production from Aqueous Glucose Solutions, ChemSusChem, 5, 1280-1290, 2012.
7. Yang G., Pidko E.A., and Hensen E.J.M., Mechanism of Brøn sted Acid-catalyzed Conversion of Carbohydrates, J.
Catal., 295, 122-132, 2012.
8. Hoang T.M.C., Lefferts L., and Seshan K., Valorization of Hu min Based Byproducts from Biomass Processing-A Route
to Sustainable Hydrogen, ChemSusChem, 6, 1651-1658, 2013.
9. Kang S., Zhang G., Yang Q., Tu J., Gua X., Qin F.G.F., and Xu Y., A New Technology for Utilization of Biomass Hydrolysis
Residual Humins for Acetic Acid Production, BioResources, 11, 9496-9505, 2016.
10. Kang S., Lin X., Jiang S., Peng Z., Lu Y., Guo J., Li J., and Zeng W., Valorization of Humins by Phosphoric Acid Ac tiva tion
for Activated Carbon Production, Biomass Con vers. Biorefin., 8, 889-897, 2018.
11. Agarwal S., van Es D., and Heeres H.J., Catalytic Pyrolysis of Recalcitrant, Insoluble Humin Byproducts from C6-Sugar
Biorefineries, J. Anal. Appl. Pyrolysis, 123, 134-143, 2017.
12. van Zandvoort I., Wang Y., Rasrendra C.B., van Eck E.R.H., Bruijnincx P.C.A., Heeres H.J., and Weckhuysen B.M.,
For mation, Molecular Structure, and Morphology of Hu mins in Biomass Conversion: Influence of Feedstock and Pro cess ing
Conditions, ChemSusChem, 6, 1745-1758, 2013.
13. Sumerskii I.V., Krutov S.M., and Zarubin M.Ya., Humin like Substances Formed Under the Conditions of Industrial
Hydro lysis of Wood, Russ. J. Appl. Chem., 83, 320-327, 2010.
14. Patil S.K.R. and Lund C.R.F., Formation and Growth of Hu mins via Aldol Addition and Condensation during Acid
Catalyzed Conversion of 5-Hydroxymethylfurfural, Energy Fuels, 25, 4745-4755, 2011.
15. Cheng Z., Everhart J., Tsilomelekis G., Nikolakis V., Saha B., and Vlachos D., Structural Analysis of Humins Formed in
the Brønsted Acid Catalyzed Dehydration of Fructose, Green Chem., 20, 997-1006, 2018.
16. Zandvoort I., van Koers E.J., Weingarth M., BruijnincxP.C.A., Baldus M., and Weckhuysen B.M., Structural Char acteri za tion of 13C-Enriched Humins and Alkali-Treated 13C Humins by 2D Solid-State NMR, Green Chem., 17, 4383-
4392, 2015.
17. Filiciotto L., Structural Insights and Valorization of Humins: A Catalytic Approach, PhD Thesis, University of Cordoba,
September 2019.
18. Hoang T.M.C., van Eck E.R.H., Gardeniers J.G.E., Lefferts L., and Seshan K., Humin Based By-products from Biomass
Processing as a Potential Carbonaceous Source for Synthesis Gas Production, Green Chem., 17, 959-972, 2015.
19. Constant S., Lancefield C.S., Weckhuysen B.M., and Bruijnincx P.C.A., Quantification and Classification of
Car bonyls in Industrial Humins and Lignins by 19F NMR, ACS Sustain. Chem. Eng., 5, 965-972, 2017.
20. Pin J.M., Guigo N., Mija  A., Vincent L., Sbirrazzuoli N., and van der Waal J.C., Valorization of Biorefinery Side- Stream
Products: Combination of Humins with Polyfurfuryl Alco hol for Composite Elaboration, ACS Sustain. Chem.
Eng., 2, 2182-2190, 2014.
21. Mija A., van der Waal J.C., Pin J.M., Guigo N., and de Jong E., Humins as Promising Material for Producing Sustain able
Car bohydrate-derived Building Materials, Constr. Build. Ma ter., 139, 594-601, 2017.
22. Sangregorioa A., Guigob N., van der Waala J.C., and Sb ir raz zuolib N., All ‘Green’ Composites Comprising Flax
Fibres and Humins' Resins, Compos. Sci. Technol., 171, 70- 77, 2019.
23. Cantarutti C., Dinu R., and Mija A., Biorefinery By- prod ucts and Epoxy Biorenewable Monomers: A Structural Elu ci da tion of Humins and Triglycidyl Ether of Phloroglu cinol Cross link ing, Biomacromolecules, 21, 517-533, 2020.
24. Dinu R. and Mija A., Cross-linked Polyfuran Networks with Elastomeric Behaviour Based on Humin Biorefinery
By- prod ucts, Green Chem., 21, 6277-6289, 2019.
25. Boquillon N., Use of an Epoxidized Oil-based Resin as Matrix in Vegetable Fibers-Reinforced Composites, J. Appl. Polym.
Sci., 101, 4037-4043, 2006.
26. Licsandru E. and Mija A., From Biorefinery by-Product to Bioresins. Thermosets Based on Humins and Epoxidized
Lin seed Oil, Cellul. Chem. Technol., 53, 963-969, 2019.
27. Tosi P., van Klink G.P.M., Celzard A., Fierro V., Vincent L., Jong E.D., and Mija A., Auto-Crosslinked Rigid Foams
De rived from Biorefinery Byproducts, ChemSusChem, 11,  2797-2809, 2018.
28. Shimin K., Jinxia F., Gang Z., Wentao Z., Huibin Y., and Yongjun X., Synthesis of Humin-Phenol-Formaldehyde
Ad hesive, Polymers, 9, 373-382, 2017.