مروری بر اصول طراحی مولکولی و تهیه پلیمرهای حافظه شکلی پاسخگو به دما

نوع مقاله : تالیفی

نویسندگان

1 هیات علمی/دانشگاه شهید مدنی آذربایجان

2 دانشگاه شهید مدنی آذربایجان

چکیده

طی سال‌های اخیر، پلیمرهای حافظه شکلی به‌عنوان جایگزینی معتبر برای مواد سنتی حافظه شکلی توسعه یافته‌اند. این پلیمرها متعلق به طبقه‌ای از مواد بسیار هوشمند هستند که قابلیت به‌یاد داشتن شکل اصلی خود را دارند. وجود این قابلیت در پلیمرهای حافظه شکلی باعث می‌شود تا این مواد برای کاربردهای فناوری گوناگون شامل حسگرها و محرک‌ها، به‌ویژه ساخت دستگاه‌های پزشکی هوشمند، بسیار مناسب و امیدوارکننده باشند. تغییرشکل پلیمرها به‌شکل موقت بوده و بازگشت به شکل اولیه در پاسخ هوشمند به محرک‌های خارجی، نظیر مواد شیمیایی، دما یا pH انجام می‌گیرد. پلیمرهای حافظه شکلی حساس به دما در دمای ویژه‌ای به نام دمای انتقال، دچار تغییر ساختاری و در نتیجه تغییرشکل می‌شوند. به این تغییرشکل ناشی از تغییر دما، اثر حافظه شکلی گرمایی گفته می‌شود. پژوهش‌ها در زمینه حافظه شکلی ابتدا در باره اثر دوشکلی القا شده با گرما آغاز شد. سپس به سایر محرک‌ها با تحریک مستقیم یا غیرمستقیم گرمایی از راه گروه‌های حساس به محرک در سطح مولکولی توسعه پیدا کرد. در این مقاله، بر مفاهیم کلیدی مرتبط با پلیمرهای حافظه شکلی به‌طور مختصر مرور می‌شود. اصول حاکم بر طراحی مولکولی در معماری‌های مناسب پلیمر، برنامه‌ریزی طراحی شده و فرایندهای بازیابی، با تمرکز بر ساختار پلیمرهای حافظه‌دار حساس به گرما نیز ارائه می‌شوند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Fundamentals of Molecular Design and Preparation of Temperature-sensitive Shape Memory Polymers: A Review

چکیده [English]

Shape memory polymers been developed in the past years as a valid alternative to more traditional shape-memory materials. Shape memory polymers belong to a class of very smart materials that have the ability to remember their original shape. This advanced functionality makes shape memory polymer suitable and promising materials for diverse technological applications, including sensors and actuators particularly including the fabrication of smart biomedical devices. The polymers deform into a temporary shape and returns to its original shape by external environmental stimuli such as chemicals, temperature or pH. Therefore, a temperature-sensitive shape memory polymer is one that undergoes a structural change at a certain temperature called the transition temperature. A change in shape caused by a change in temperature is called a thermally-induced shape memory effect. Shape-memory research was initially founded on the thermally-induced dual-shape effect. This concept has been extended to other stimuli by either indirect thermal actuation or direct actuation by addressing stimuli-sensitive groups on the molecular level. This paper is intended to serve as a brief review of key concepts associated with shape memory material. This review describes the fundamental aspects of molecular design of suitable polymer architectures, tailored programming and recovery processes, with the focus being on the structure of thermally sensitive shape memory polymers.

کلیدواژه‌ها [English]

  • shape memory polymer
  • temperature sensitive polymer
  • shape memory transition temperature
  • magnetic nanoparticle
  • biodegradability
1.Chluba C., Ge W., de Miranda R.L., Strobel J., Kienle L., Quandt E., and Wuttig M., Ultralow-Fatigue Shape Memory Alloy Films, Science, 348, 1004-1007, 2015.
2.Hu J., Shape Memory Polymers and Textiles, Elsevier, New York, 5-23, 2007.
3.Heuchel M., Cui J., Kratz K., Kosmella H., and Lendlein A., Relaxation Based Modeling of Tunable Shape Recovery KineticsObserved Under Isothermal Conditions for Amorphous Shape-Memory Polymers, Polymer, 51, 6212-6218, 2010.
4.Zhao Q., Qi H.J., and Xie T., Recent Progress in Shape MemoryPolymer: New Behavior, Enabling Materials and MechanisticUnderstanding, Prog. Polym. Sci., 49, 79-120, 2015.
5.Anthamatten M.L., Li J., and Lewis C.L., Shape Memory Polymers, U.S. Pat. 8,172,873, 2012.
6.Hu J., Zhu Y., Huang H., and Lu J., Recent Advances in Shape Memory Polymers: Structure, Mechanism, Functionality, Modeling and Applications, Prog. Polym. Sci., 37, 1720-1763, 2012 .
7.Lendlein A. and Kelch S., Shape-Memory Polymers as Stimuli-Sensitive Implant Materials, Clin. Hemorheol. Microcirc., 32, 105-116, 2005.
8.Love A.E.H., A Treatise on the Mathematical Theory of Elasticity,Cambridge University, New York, 401-409, 2013.
9.Rousseau I.A., Challenges of Shape Memory Polymers: A Reviewof the Progress Toward Overcoming SMP's Limitations, Polym. Eng. Sci., 48, 2075-2089, 2008.
10.Xie T. and Rousseau I.A., Facile Tailoring of Thermal TransitionTemperatures of Epoxy Shape Memory Polymers, Polymer,50, 1852-1856, 2009.
11.Buckley C.P., Prisacariu C., and Caraculacu A., Novel Triol-Crosslinked Polyurethanes and their Thermorheological Characterizationas Shape-Memory Materials, Polymer, 48, 1388-1396, 2007.
12.Mather P.T., Luo X., and Rousseau I.A., Shape Memory PolymerResearch, Annu. Rev. Mater. Res., 39, 445-471, 2009.
13.Burgess S.K., Kriegel R.M., and Koros W.J., Carbon Dioxide Sorption and Transport in Amorphous Poly(ethylene furanoate),Macromolecules, 48, 2184-2193, 2015.
14.Ma J., Starck S.R., and Hecht S.M., DNA Polymerase β Inhibitorsfrom Tetracera Boiviniana, J. Nat. Prod., 62, 1660-1663, 1999.
15.Cramér H., Mathematical Methods of Statistics (PMS-9), Princeton University, New Jersey, 166-180, 2016.
16.Kim B.K., Lee S.Y., and Xu M., Polyurethanes Having Shape Memory Effects, Polymer, 37, 5781-5793, 1996.
17.Li F., Zhang X., Hou J., Xu M., Luo X., Ma D., and Kim B.K., Studies on Thermally Stimulated Shape Memory Effect of Segmented Polyurethanes, Appl. Polym. Sci., 64, 1511-1516, 1997.
18.Popadyuk N., Popadyuk A., Kohut A., and Voronov A., ThermoresponsiveLatexes for Fragrance Encapsulation and Release,Int. J. Cosmet. Sci., 38, 139-147, 2016 .
19.Vavasori A. and Ronchin L., Phosgene-Free Synthesis of 1,3-Diphenylurea via Catalyzed Reductive Carbonylation of Nitrobenzene, Pure Appl. Chem., 84, 473-484, 2012.
20.Wei Z.G., Sandstroröm R., and Miyazaki S., Shape-Memory Materials and Hybrid Composites for Smart Systems: Part I. Shape-Memory Materials, J. Mater. Sci., 33, 3743-3762, 1998.
21.Mather P.T., Jeon H.G., and Haddad T.S., Strain Recovery in POSS Hybrid Thermoplastics, Polym. Prepr. Am., 41, 528-529, 2000 .
22.Mather P.T., Jeon H.G., Romo-Uribe A., Haddad T.S., and Lichtenhan J.D., Mechanical Relaxation and Microstructure of Poly()norbornyl-POSS) Copolymers, Macromolecules, 32, 1194-1203,1999.
23.Zhao Q., Behl M., and Lendlein A., Shape-Memory Polymers with Multiple Transitions: Complex Actively Moving Polymers,Soft Matter, 9, 1744-1755, 2013.
24.Maitland D.J., Metzger M.F., Schumann D., Lee A., and WilsonT.S., Photothermal Properties of Shape Memory Polymer Micro-actuators for Treating Stroke, Lasers Surg. Med., 30, 1-11, 2002.
25.Small Iv W., Wilson T.S., Benett W.J., Loge J.M., and MaitlandD.J., Laser-activated Shape Memory Polymer IntravascularThrombectomy Device, Opt. Exp., 13, 8204-8213, 2005 .
26.Ebara M., Kotsuchibashi Y., Uto K., Aoyagi T., Kim Y.J., Narain R., Hoffman J.M., Uto K., and Aoyagi T., Shape-Memory
Materials, Smart Biomaterials, Springer, New Tork, 285-373, 2014.
27.Bhattacharya S.K. and Tummala R.R., Epoxy Nanocomposite Capacitors for Application as MCM-L Compatible Integral Passives, J. Electron. Package, 124, 1-6, 2002.
28.Koerner H., Price G., Pearce N.A., Alexander M., and Vaia R.A., Remotely Actuated Polymer Nanocomposites—Stress-Recovery of Carbon-nanotube-filled Thermoplastic Elastomers,Nat. Mater., 3, 115-120, 2004.
29.Behl M. and Lendlein A., Shape-Memory Polymers, Mater. Today., 10, 20-28, 2007 .
30.Buckley P.R., McKinley G.H., Wilson T.S., Small W., Benett W.J., Bearinger J.P., and Maitland D.J., Inductively Heated Shape Memory Polymer for the Magnetic Actuation of MedicalDevices, IEEE Trans. Biomed. Eng., 53, 2075-2083, 2006.
31.Tobushi H., Hayashi S., Hoshio K., and Ejiri Y., Shape Recovery
and Irrecoverable Strain Control in Polyurethane Shape-Memory Polymer, Sci. Tech. Adv. Mater., 2008, doi:10.1088/1468-6996/9/1/015009.
32.Yang B., Huang W.M., Li C., Li L., and Chor J.H., QualitativeSeparation of the Effects of Carbon Nano-powder and Moisture on the Glass Transition Temperature of PolyurethaneShape Memory Polymer, Scripta Materialia, 53, 105-107, 2005 .
33.Chae Jung Y., Hwa So H., and Whan Cho J., Water-ResponsiveShape Memory Polyurethane Block Copolymer Modified with Polyhedral Oligomeric Silsesquioxane, Macromol. Sci., Part B, 45, 453-461, 2006.
34.Lan X., Liu L., Liu Y., Leng J., and Du S., Post MicrobucklingMechanics of Fibre-Reinforced Shape Memory Polymers Undergoing Flexure Deformation, Mech. Mater., 72, 46-60, 2014.
35.Koebbe C.J., Veznedaroglu E., Jabbour P., and Rosenwasser R.H., Endovascular Management of Intracranial Aneurysms: Current Experience and Future Advances, Neurosurgery, 59, 93-102, 2006.
36.Filion T.M., Xu J., Prasad M.L., and Song J., In Vivo Tissue Responses to Thermal-responsive Shape Memory Polymer Nanocomposites, Biomaterials, 32, 985-991, 2011.
37.Zhang J.N., Ma Y.M., Zhang J.J., Xu D., Yang Q.L., Guan J.G., and Jiang L., Microfiber SMPU Film Affords Quicker Shape Recovery than the Bulk One, Mater. Lett., 65, 3639-3642, 2011.
38.Meng Q., Liu J., Shen L., Hu Y., and Han J., A Smart Hollow Filament with Thermal Sensitive Internal Diameter, J. Appl. Polym. Sci., 113, 2440-2449, 2009.
39.Meng Q. and Hu J., A Review of Shape Memory Polymer Composites and Blends, Composites, Part A, 40, 1661-1672, 2009.
40.Yu X., Zhou S., Zheng X., Guo T., Xiao Y., and Song B., A Biodegradable Shape Memory Nanocomposite with Excellent Magnetism Sensitivity, Nanotechnology, 20, 235702, 2009.