Abstract

Nanofiber scaffolds possess high surface-to-volume ratios and adjustable porosity which promotes cellular activities such as attachment and infiltration, therefore providing some key characteristics of the native extracellular matrix. Compared to other production methods of nanofibers, electrospinning is a versatile and simple procedure. Due to recent developments and improvements, electrospinning is becoming a popular technique in the fabrication of three-dimensional (3D) scaffolds. In general, 3D scaffolds can provide a better link between single cells and organs than conventional 2D scaffolds. To date, several approaches have been proposed to fabricate 3D fiber structures by electrospinning. This article summarizes the production of 3D scaffolds using electrospinning techniques by physical methods including combining rapid prototyping and direct-write with electrospinning, post-processing after electrospinning (laser process, physical punching method), liquid-assisted collection, template-assisted collection, porogen-added electrospinning, co-axial electrospinning, and needleless electrospinning. Furthermore, the role of various factors like voltage and humidity in electrospun scaffolds is discussed.

Key Words

- tissue engineering
- nanofiber
- electrospinning
- 3D scaffold
- cell culture

(*) To whom correspondence should be addressed. E-mail: j.mokhtari@guilan.ac.ir
مروری کوتاه بر روش‌های تهیه داربست‌های سبدی و متخلف از راه الکترونسی - قسمت اول: روش‌های فیزیکی

زهره یادروز، جواد مخترعی

رشت، دانشگاه گیلان، دانشکده فنی، گروه مهندسی نانوسی، صندوق پستی ۴۱۶۸۵-۳۸۰۴۹

دریافت: ۱۳۹۴/۶/۴ پذیرش: ۱۳۹۴/۶/۴

داربست‌های نانویی نسبت به حجم زیاد و خلخل تنظیم پذیر دارند، این ویژگی‌ها باعث پیشرفت فعالیت‌های سلولی مانند چسبندگی و نفوذ می‌شود. این داربست‌ها، بخشی از خواص کلیدی ماتریس برون‌سولولی طبیعی را ارائه می‌دهند. الکترونسی در مقایسه با سایر فرایندهای تولید نانویی، روشی ساده و متون است. روش تولید و اصلاحات اخیر در فناوری آن، تبدیل به روشهای جدید برای تولید داربست‌های سبدی شده است. پیشرفت، داربست سبدی جدیدی با تبدیل به داربست دومیدی می‌تواند بهتری میان سلول و اندام برقرار کند. تا به امروز، روش‌های مختلف برای تهیه ساختارهای سبدی الافازی از الکترونسی پیشنهاد شده است. مقاله پیشرفت و نتایج آن در نمونه‌ای از روش‌های فیزیکی تولید داربست‌های سبدی به کمک الکترونسی، از جمله ترکیب الکترونیکی سریع و پوستی با الکترونسی، فرایندهای اصلاح پس از الکترونسی (فرایندها نیز، روش فیزیکی پایه) جمع‌آوری الافازی با کمک سیال، جمع‌آوری الافازی به روش‌های قابلی، انفکتیو ذرات به الکترونسی، الکترونسی همچون و الکترونسی بدون سوزن را بیان می‌کند. افزون یادروز برآن، یک نشست عوامل مختلف، مانند ولتاژ و رطوبت در داربست‌های الکترونسی شده در نیز

پیام‌کار

j.mokhtari@guilan.ac.ir
مقدمه

از مضیقات بزرگی که علم پزشکی از دیرباز با آن درگیر بوده، یاد ارائه درمان پنل برای بایزاسی بافت‌های ازکارافتاده و معوب است. متفاوت‌ترین شیوه در دامنه این نوع بافت‌های رو به پیدا است که بتواند با شکل‌گیری شکل‌های متعدد را به‌کار بگیرد. از این نظر، به‌عنوان مهدسی بافت و تولید داربستی از پلیمری طبیعی و مصنوعی بیش از پیش احساس می‌شود. بنابراین به‌عنوان اهمیت ژنتیکی، تولید بافت‌های مصنوعی برای بازیگری عملکرد می‌باشد. از این رو، سلول‌های کشت شده در داربست سعی وسیعی نسبت به نوع دویژدی معمولی می‌تواند بته‌ری با ایجاد ایجاد کننده. در داربست‌های سعی وسیع‌سازی برای واکنش‌های سلول‌سازی، مهم‌ترین راهکار برای تغییر و تولید سلول‌های ناپیوسته است. به‌طور خاص، ایجاد این اتصالات داخلی منظور تح俄国یکی و سازمانده مجدد سلول‌داری اهمیت دارد. زیرا اگر با ساخت کردن داربست‌های ناپیوسته‌سازی می‌تواند یک داربست سعی وسیع‌سازی را بتواند، در مقاله محوری پیش رو به مداری خاصی به پیش‌رفت‌های اخیر در تولید داربست‌های ناپیوسته می‌باشد. یک حاصل اصلاح جمع‌کننده، صفحه سرد (cold-plate)، حمام انگشت، همراه با ورودی‌یزد مهره با ورودی‌یزد مهره، گاز (rapid prototyping)، چاب مستقیم (DWES) و همچنین همراه با ورودی‌یزد مهره با ورودی‌یزد مهره، گاز (rapid prototyping)، چاب مستقیم (DWES) و همچنین (porogen addition)، با ویتال مثبت و منفی و اکونورپی بدون دوزی، پرداخته شده است.

تولید داربست‌های سعی وسیعی و منشأگیری و روش‌های اکونورپی

اصلاح جمع‌کننده

امروزه، تولید داربست‌های سعی وسیعی به‌کمک طراحی جمع‌کننده، بانوی‌بری به‌کمک تکنیک‌های جمع‌کننده متغیر و با توجه به کنترل آسان و راه‌پیامی جمع‌کننده می‌تواند نتایج متفاوتی و با شکل منظم‌تر، مندای جمع‌کننده داربست‌های جرخشی‌که با کتاهی سیاه و سایر شیوه‌های سیاهی، مندای میکروالیا (PLGA) و همکاران برای تولید سیستم‌های توان‌سازی ناپیوسته‌سازی در سیستم‌های الکتروپی (PLGA) معمولی می‌باشد. جمع‌کننده تزیین تری‌شده، همچون نوع انتخابی از پلی‌اکتوپلی‌بری‌پلی‌اکتوپلی‌ب(skelette 1) برخی به‌عنوان از سیستم‌های الکتروپی‌پیشنهادی [12].

شکل 1 - نمایی از سیستم‌های الکتروپی‌پیشنهادی [12]
جدول ۱- ضخامت، چگالی و تخلیخ داربست‌های نانو‌الافی الکتروپتیکی شده [۱۴].

<table>
<thead>
<tr>
<th>نوع</th>
<th>روش</th>
<th>زمان (h)</th>
<th>ضخامت (μm)</th>
<th>چگالی (g/cm³)</th>
<th>تخلیخ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>الکتروپتیکی معمولی</td>
<td>الف</td>
<td>۱</td>
<td>۸۵</td>
<td>۰/۲۵</td>
<td>۷۸</td>
</tr>
<tr>
<td>الکتروپتیکی معمولی</td>
<td>ب</td>
<td>۵</td>
<td>۳۰۰</td>
<td>۰/۳۱</td>
<td>۷۳</td>
</tr>
<tr>
<td>روش پیشنهادی</td>
<td>ج</td>
<td>۵</td>
<td>۱۵۰۰۰</td>
<td>۰/۱۰</td>
<td>۹۸</td>
</tr>
</tbody>
</table>
توضیحات طبیعی:

نفوذ و ترویج سلول‌های استخوانی در دارد کامپوزیتی کیتوسان و زلانیم [16].

مکرولیفی را از زلانیم و کیتوسان تهیه کردند. بدین منظور، آن‌ها الاف کیتوسان بافت‌های را با کمک ماسینگنه بیان‌گری بندید (بیان‌گری نانولایف زلالیم را بر روش الکترونیک پری یافته کیتوسان بافت شده که جمع‌آوری کردن (شکل 3) به دریافت آن‌ها توانستند از نانولایف داربستی با استحکام مکاتیکی کافی و ساختار متخلخل تهیه کنند (شکل 5). سپس، دیوار کشت سلول‌های از این داربست سبک‌یار برای سیل‌کردن. نتایج نشان داد، داربست تهیه شده خواص مکاتیکی کافی و تخلخل مناسب برای کاربردهای مهندسی بافت دارد [16].

الکترونیک صفحه سرد در این روش جمع‌کننده به سر دارد که (chiller) منصوب می‌شود که قابلیت سرد کردن صفحه جمع‌کننده را تا °C 9-0 - در دارد (شکل 3). از این روش می‌توان به دست‌آوردهای بهبود افزایش، رسانش الکترونیک الاف، افزایش می‌یابد. در اثر بار الکتریکی نانولایف سریع‌تر به جمع‌کننده متفاوت می‌شود. همچنین، به دلیل روانی زیاد و وجود بلوارهای بیش از الاف، نیروهای جدید شده روی سطح الاف جمع می‌شوند و الاف کیکیک یا دفع می‌کنند. به‌دین ترتیب، داربست تخلخل و سبیعی به‌دست می‌آید.

در این مطالعه Faheem و همکاران با استفاده از فناوری الکترونیک صفحه سرد (CPE)، داربست الاف سبیعی از ایرانی تا کاربرد در ساخت پوست کستنی تولید کردن. همچنین آن‌ها نانولایف به‌دست آمده از این روش را با لایه نانولایف دویده تولید شده از الکترونیکی معمولی (TE) و داربست نانولایف سبیعی تولید شده با

![شکل 5- تصویر SEM از داربست کامپوزیتی کیتوسان و زلانیم [16]](اینگال)

![شکل 3- نمایی از فرآیند ساخت الاف نرم از الکترونیکی با جمع کننده ویژه، (ب)-1 الاف، (ب)-2 الاف، (ب)-3 الاف، PLLA گریز، برای PLLA غلیظ کردن در ومولDED 21 روز و رشد HA روی سطح الاف [15] (ب)]](اینگال)

![شکل 4- نمایی از الکترونیکی محصول زلانیم روی داربست کیتوسنس بافت‌های شده [16]](اینگال)
استفاده از روش الکترونریپسی حذف نمک (SLE) مقایسه کرده. شباهت توجه اسم، در این پژوهش برای تهیه محلول الکترونریپسی از دو پلیمر ابرهشم و پلی اتان اکسید (PEO) استفاده شد. سپس، تمام نمونه‌های ساخته شده، بالاصلی به اتصالی کن اجسامی منتقل و در اتاق‌های گاز و فرآیند شدن، در مراحل عبور، با کمک آب مفطر حذف شد. نتایج نشان داد که انتخاب داریست تولید، شده با روش SLE نسبت به دو روش دیگر بهتر است و برای تکنیک و CPE رشد سلول مناسب است (شکل 7). بر اساس نتایج بدست آمده از محاسبه خواص فیزیکی (تورم، برداشت آب و درصد تخلخل) داریست تولید شده با روش الکترونریپسی صفحه سرد، نسبت به داریستهای تولید شده با PEO، شیوعه و ترکیب سیستمی SLE، روش‌های TE و CPE خواص مسابقه با پلی‌اکسید، سیستم‌های پلی‌اکسید سیبی می‌کنند. می‌تواند موجب بهبود عملکرد کلی و فهرش به سلول ساعدی (شکل 9) یاد خواهد کرد.

![اکترونریپسی مرطوبه]({attachment:electrospinning.png})

در این پژوهش برای تهیه داریست، پلیمر در حمام انعقاد الکترونریپسی در نظر گرفته شد. D برنامه‌ریزی مورد استفاده کرده است (شکل 17).

![شکل 7- مقایسه ضخامت داریستهای تولید شده با سه روش SLE، CPE و TE](image.png)
شکل ۱۰- (الف) تصویر میکروسکوپ نوری و (ب) تصویر SEM از داربست سبزه‌دیا ساخته شده پس از فرآیند لیزر و (ج) مقایسه اندازه‌های برای تعداد بال‌ها مختلف لیزر [۲۱].

در این روش، از پک‌های راکتیک و یک دستگاه ذوب-ثبت با رسم مبتنی بر حرکت، پیشرفت ذوب شده به‌صورت شکلی عمود بر هم تولید می‌شود. بارکاری این در داربست‌های تولید شده به‌کمک این روش حفره‌ای با اندازه‌های بسیار بزرگ‌تر از اندازه سلول ایجاد می‌شود، که برای چسبندگی و شرکت سلول مناسب نیست. از زنده دیگر داربست‌های ساخته شده با الکترونسیم استحکام کمی دارند. در این روش، روش‌های مختلف الکتروداری سریع متعدد شده است.
منظره‌ای ابداع دارد. در دمای ۷۵۰C، سیس آن را با میله‌هایی بی‌سو روان کردند. این کار داریست پلاک‌رکومان-پلاکولکتین، آلزایمر بسیار متنخل با شبکه پلاکولکتین جامی با شده به‌دست آمد (شکل 11). با توجه به نتایج می‌توان کفت، خواص مکانیکی داریست‌ها، با راحتی به‌وسیله‌ای‌های تولید شده با الگویی سریع، افزایش یافت. [۷]

آکتوروپی‌سی چاب مستقیم

در روست‌های پلاکولکتین مسیر و عملیات نمک عنصر جت الکتروپی‌سی در یک نقطه و پوشش جمع‌کننده در طول مسیر ارزیش معین. به الکتروپی‌سی تعمیرات افزوده‌ای شود. به‌دست‌آوردن متن، طبینه شکل الکتروپی‌سی (sharp-pin) در جمع‌کننده و الکتروپی‌سی میانه‌ای (lattice pores) به‌دلت میانه، میانه و الکتروپی‌سی بی‌سیم کرده شده می‌شود. در تحقیق نامتانالیاف با توجه به مسیر جمع‌کننده جمع‌آوری می‌شوند. با این وجود، داریست نانولایه سبب می‌شود با منافذ سبزی و منصل‌بندس می‌آید [۲۴،۲۳].

Lee و همکاران دریست نانولایه‌های مستقیم با منافذ شبکه‌ای (lattice pores) را با استفاده از روش الکتروپی‌سی چاب مستقیم تولید کردند. روست استفاده شده ماهی‌اروا مسیر الکتروپی‌سی چاب مستقیم برای تولید شبکه‌های نانولایه‌ای و ایجاد لایه‌های شبکه‌ای روي یک‌دیگر، با هدف تولید داریست به‌دست‌آورده با منافذ منظم و

DHES

مدت زمانی به‌حتم برای مهارت در ایجاد الکتروپی‌سی چاب نانولایه سبب می‌شود با منافذ شبکه‌ای و (ب) انتشار شبکه‌ها و تولید داریست سبزی [۲۳].

شکل ۱۲- نمایی از الکتروپی‌سی چاب مستقیم [۲۴].

شکل ۱۱- مراحل نهایی داریست پلاکولکتین-پلاکولکتین-آلزایمر [۷].

منافذ دانه‌ای و استحکام بیشتر روش الکتروپی‌سی سریع را با روش الکتروپی‌سی ادبغ کردند. در حرفه، به‌کمک روش الکتروپی‌سی سریع قابلیت با حفظ‌های منظم طراحی می‌شود که از آن به‌جا می‌آید. جمع‌کننده عمومی در الکتروپی‌سی استفاده می‌شود [۲۴].

داریست سبزی از آلزایمر و Hyung Kim و Seong Kim پلاکولکتین نهایی کردن. در این کار، داریست الکتروپی‌سی پلاکولکتین-آلزایمر، با استفاده از روش تکیه الکتروپی‌سی مرطوب و فرایند الکتروپی‌سی سریع نهایی شد. ابتدا با کمک دستگاه دوی-چرخ با رسم مسیر جفت، پلاکولکتین دوی دوم به‌صورت شبکه عمومی یکم تولید شد. سپس با روش الکتروپی‌سی الکتروپی‌سی پلاکولکتین-آلزایمر روش مناسب شده، با استفاده از الکتروپی‌سی دوی-چرخ با روش تکیه الکتروپی‌سی، آلزایمر نانولایه کامل بود و روی لایه که از آن به‌جا می‌آید در حمام انارول‌کاری به‌دست‌آورده شده.
حل شدن. پلی کاربولاکتون در هسته داخلی و پلی استیرن در لایه خارجی (پوشش) الکتروپتیک شدند [8]. لیا خارجی پلی استیرن نقش کلیدی در تهیه ساختار نرم سبعه ایفا می‌کنند. محلول پلی استیرن و جفت پلی کاربولاکتون از نوک سوزن در اثر وتلخ مثبت اعمال شده به سر سوزن، درایی به مثبت هستند. پس از فرآیند کشش، ناپایداری شلیاف، سلندری شدن جفت و تبخير خلال، با مثبت الیاف به سرعت به جمع کنندگان درایی بار منفی منتقل می‌شود. از طرفی، به دست رساناپوند پلی استیرن، بار منفی از نوک آلومینیوم به الیاف منتقل و در نوک توده جمع می‌شود. الیاف به دست اطراف الکتروپتیک و قطعی شدن در الکتروپتیکی، قوز دارای بار منفی می‌شوند. بارهای منفی ضخامت کافی است. در این پژوهش از پلی کاربولاکتون برای تهیه داریست استفاده شده است. لیایه پلی کاربولاکتون، پس از ساخت این شبکه‌ها روز یکندرگی ایجاد می‌شود. سپس، با ماده متصل کننده از محلول کاربولاکتون و پلی کاربولاکتون به یکندرگی متصل می‌شود (شکل 13). در این مطالعه به منظور مقایسه، داریست پلی کاربولاکتون را با سه روش چاب سنتیم، الکتروپتیکی معمولی و روش حذف نمک ساخته شد. در شکل 14 داریست تهیه شده از این روش با داریست این داده به روش الکتروپتیکی معمولی و حذف نمک مقایسه شده است. برای نشان دادن برتری داریست بیشه‌آور، رنگ سپر در داریست بعدد 14 روز از روش الکتروپتیکی معمولی و حذف نمک مقایسه شده تا نشان داده دریست بیشه‌آور محیط مناسبتری برای پیاز بافت نرم سبزی از نظر مهار و همچنین نگهدارنده و قمشب سپر فراهم می‌کند [32].

![شکل 15- نمایی از بارهای موجود در نوک توده الیاف](image)

الکتروپتیکی های دوافتانکی و هم‌یخور

روش‌های مختلف برای تولید داریست‌های سبزی از الیاف درجه‌بندی و چرخه‌بندی [25] از این قسمت به طور مختلف در پژوهش‌های دیگری بیان شده دارد. لیا خارجی پلی استیرن (PCL) و Lee را به منظور تهیه محلول الکتروپتیکی این دو پلیمر در مخلوط (DMF) هم‌یخور به منظور دیزاین و تغییر قابلیت‌های (THF) و دی‌تی‌اف‌ور (PCL) و دی‌تی‌اف‌ور (PCL)
کاهش داده شد. سپس ترکیب هیالورونیک اسید-کلاژن با مولتی و
با استفاده از مخلوط سدیم هیدروکسید (سود)-DMF-
(فل) حل شد. در ادامه، ساختار نرم و کریک و نانوپدیف
حجم ناشی از تغییرات متعدد جفت الکتروریپی و رشد عمده
آن توسه بافت. این ساختار شکنندگی و اندوزش مواد آن ناکام است.
بنابراین، ذرات نانو کریک به عنوان خودکار اجباری گرفته شده و در
طول الکتروریپی به طور کننگ شده لیامتیان شده. در نهایت، با
پیوند عرضی و حذف نانو کریک برای هیالورونیک اسید مورم
بدست آمد که هنده نانوپدیف و درشت و همچنین حفظ میک
سطح (اشکال 19). این آزمایش نشان داد که با استفاده از
شده در دارسیت آزمایش.

(ب) تصویر کامپوزیت ساخته شده نمک- نانوپدیف [29].

نفوذ سولو به داخل دارسیت کمک می‌کند [31]. و همکاران برای کمک الکتروریپی و حذف نمک,
دارسیت نانوپدیف از هیالورونیک اسید (HA) و کلاژن تولید کردهند.
برای این کار، فاصله میان افتابیک و گیم کننده در الکتروریپی

اشکال 20- تصویر SEM دارسیت‌های ساخته شده در وسایعی مختلف [32].
شاخص: پلاستیک

شکل ۲۱- (الف) نمایی از الکتروپراسی سیفوفیل (بدون سوزن). (ب) الیاف جمع شده در استوانه. (ج) لایه الیاف جمع شده از استوانه و (د) لایه نانوایلی تولید شده با الکتروپراسی سوزنی [۳۶].

از سطح یاز مابع است. تاکنون انواع مختلف الکتروپراسی بدون سوزن اختراع شده است [۲۵]. پلی‌پروپیلن الکتریز (PDLLA) و پلی‌پروپیلن الکتریز لاتکس (PVA) داریست سببی که در این پژوهش، ابتدا به سر سوزن ودعا می‌شود. می‌توان از نانوایل روز این استوانه تولید شده را در بررسی سیفوفیل (بدون سوزن) می‌تواند منفی عملی شود. از آنجا که محلول پلی‌پروپیلن برای منفی می‌شود، لایه جدید و لایه قابلیت پدیدگر را جذب می‌کند. بنابراین ترتیب داریستی ضخامت لایه می‌شود [۲۶].

نتایج نشان می‌دهد، داریستهای تهیه شده با این روش در پزشکی زامیا کمبیکنی خصوصاً ضخامت بیشتری نسبت به داریستهای تهیه شده با الکتروپراسی معمولی دارند (شکل ۲۰).

نتایج گیری

مهندسی بافت علمی است که به‌منظور ترمیم و بهبود بافت صدها تا صدها بان را سطحی آزاد از محلول پلی‌پروپیلن تشکیل می‌شود. این عمل می‌تواند با تولید داریستهای سه‌بعدی منجر شود. الکتروپراسی بدون سوزن در حقیقت تشکیل نانوایلی به‌طور مستقیم

15. Jin L., Feng Z.Q., Wang T., Ren Z., Ma S., Wu J., and Sun...

